Matches in SemOpenAlex for { <https://semopenalex.org/work/W1881929920> ?p ?o ?g. }
- W1881929920 endingPage "381" @default.
- W1881929920 startingPage "368" @default.
- W1881929920 abstract "For many high‐dimensional studies, additional information on the variables, like (genomic) annotation or external p ‐values, is available. In the context of binary and continuous prediction, we develop a method for adaptive group‐regularized (logistic) ridge regression, which makes structural use of such ‘co‐data’. Here, ‘groups’ refer to a partition of the variables according to the co‐data. We derive empirical Bayes estimates of group‐specific penalties, which possess several nice properties: (i) They are analytical. (ii) They adapt to the informativeness of the co‐data for the data at hand. (iii) Only one global penalty parameter requires tuning by cross‐validation. In addition, the method allows use of multiple types of co‐data at little extra computational effort. We show that the group‐specific penalties may lead to a larger distinction between ‘near‐zero’ and relatively large regression parameters, which facilitates post hoc variable selection. The method, termed GRridge , is implemented in an easy‐to‐use R‐package. It is demonstrated on two cancer genomics studies, which both concern the discrimination of precancerous cervical lesions from normal cervix tissues using methylation microarray data. For both examples, GRridge clearly improves the predictive performances of ordinary logistic ridge regression and the group lasso. In addition, we show that for the second study, the relatively good predictive performance is maintained when selecting only 42 variables. Copyright © 2015 John Wiley & Sons, Ltd." @default.
- W1881929920 created "2016-06-24" @default.
- W1881929920 creator A5025850020 @default.
- W1881929920 creator A5036462844 @default.
- W1881929920 creator A5048187760 @default.
- W1881929920 creator A5082508483 @default.
- W1881929920 creator A5090122358 @default.
- W1881929920 date "2015-09-13" @default.
- W1881929920 modified "2023-10-16" @default.
- W1881929920 title "Better prediction by use of co-data: adaptive group-regularized ridge regression" @default.
- W1881929920 cites W1532289440 @default.
- W1881929920 cites W1578530776 @default.
- W1881929920 cites W1755052449 @default.
- W1881929920 cites W1982652137 @default.
- W1881929920 cites W1994018858 @default.
- W1881929920 cites W2010622913 @default.
- W1881929920 cites W2020925091 @default.
- W1881929920 cites W2021733365 @default.
- W1881929920 cites W2028976833 @default.
- W1881929920 cites W2043175314 @default.
- W1881929920 cites W2050815280 @default.
- W1881929920 cites W2081098333 @default.
- W1881929920 cites W2102140136 @default.
- W1881929920 cites W2106393550 @default.
- W1881929920 cites W2106398669 @default.
- W1881929920 cites W2134752341 @default.
- W1881929920 cites W2162617056 @default.
- W1881929920 cites W2169088065 @default.
- W1881929920 cites W4234698323 @default.
- W1881929920 doi "https://doi.org/10.1002/sim.6732" @default.
- W1881929920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26365903" @default.
- W1881929920 hasPublicationYear "2015" @default.
- W1881929920 type Work @default.
- W1881929920 sameAs 1881929920 @default.
- W1881929920 citedByCount "72" @default.
- W1881929920 countsByYear W18819299202015 @default.
- W1881929920 countsByYear W18819299202016 @default.
- W1881929920 countsByYear W18819299202017 @default.
- W1881929920 countsByYear W18819299202018 @default.
- W1881929920 countsByYear W18819299202019 @default.
- W1881929920 countsByYear W18819299202020 @default.
- W1881929920 countsByYear W18819299202021 @default.
- W1881929920 countsByYear W18819299202022 @default.
- W1881929920 countsByYear W18819299202023 @default.
- W1881929920 crossrefType "journal-article" @default.
- W1881929920 hasAuthorship W1881929920A5025850020 @default.
- W1881929920 hasAuthorship W1881929920A5036462844 @default.
- W1881929920 hasAuthorship W1881929920A5048187760 @default.
- W1881929920 hasAuthorship W1881929920A5082508483 @default.
- W1881929920 hasAuthorship W1881929920A5090122358 @default.
- W1881929920 hasBestOaLocation W18819299202 @default.
- W1881929920 hasConcept C105795698 @default.
- W1881929920 hasConcept C107673813 @default.
- W1881929920 hasConcept C119857082 @default.
- W1881929920 hasConcept C124101348 @default.
- W1881929920 hasConcept C136764020 @default.
- W1881929920 hasConcept C148483581 @default.
- W1881929920 hasConcept C151730666 @default.
- W1881929920 hasConcept C151956035 @default.
- W1881929920 hasConcept C154945302 @default.
- W1881929920 hasConcept C157553263 @default.
- W1881929920 hasConcept C203868755 @default.
- W1881929920 hasConcept C207201462 @default.
- W1881929920 hasConcept C2779343474 @default.
- W1881929920 hasConcept C33923547 @default.
- W1881929920 hasConcept C37616216 @default.
- W1881929920 hasConcept C41008148 @default.
- W1881929920 hasConcept C83546350 @default.
- W1881929920 hasConcept C86803240 @default.
- W1881929920 hasConceptScore W1881929920C105795698 @default.
- W1881929920 hasConceptScore W1881929920C107673813 @default.
- W1881929920 hasConceptScore W1881929920C119857082 @default.
- W1881929920 hasConceptScore W1881929920C124101348 @default.
- W1881929920 hasConceptScore W1881929920C136764020 @default.
- W1881929920 hasConceptScore W1881929920C148483581 @default.
- W1881929920 hasConceptScore W1881929920C151730666 @default.
- W1881929920 hasConceptScore W1881929920C151956035 @default.
- W1881929920 hasConceptScore W1881929920C154945302 @default.
- W1881929920 hasConceptScore W1881929920C157553263 @default.
- W1881929920 hasConceptScore W1881929920C203868755 @default.
- W1881929920 hasConceptScore W1881929920C207201462 @default.
- W1881929920 hasConceptScore W1881929920C2779343474 @default.
- W1881929920 hasConceptScore W1881929920C33923547 @default.
- W1881929920 hasConceptScore W1881929920C37616216 @default.
- W1881929920 hasConceptScore W1881929920C41008148 @default.
- W1881929920 hasConceptScore W1881929920C83546350 @default.
- W1881929920 hasConceptScore W1881929920C86803240 @default.
- W1881929920 hasIssue "3" @default.
- W1881929920 hasLocation W18819299201 @default.
- W1881929920 hasLocation W18819299202 @default.
- W1881929920 hasLocation W18819299203 @default.
- W1881929920 hasLocation W18819299204 @default.
- W1881929920 hasLocation W18819299205 @default.
- W1881929920 hasOpenAccess W1881929920 @default.
- W1881929920 hasPrimaryLocation W18819299201 @default.
- W1881929920 hasRelatedWork W1997711767 @default.
- W1881929920 hasRelatedWork W2380784125 @default.
- W1881929920 hasRelatedWork W2429564919 @default.