Matches in SemOpenAlex for { <https://semopenalex.org/work/W1882052079> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1882052079 endingPage "4388" @default.
- W1882052079 startingPage "4355" @default.
- W1882052079 abstract "For a linear flow <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Phi> <mml:semantics> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:annotation encoding=application/x-tex>Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a vector bundle <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi colon upper E right-arrow upper S> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>pi : E rightarrow S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a spectrum can be defined in the following way: For a chain recurrent component <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the projective bundle <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper P upper E> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>P</mml:mi> </mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {P} E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consider the exponential growth rates associated with (finite time) <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis epsilon comma upper T right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(varepsilon ,T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-chains in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and define the Morse spectrum <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript upper M o Baseline left-parenthesis script upper M comma normal upper Phi right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>M</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Sigma _{Mo}(mathcal {M},Phi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as the limits of these growth rates as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=epsilon right-arrow 0> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>varepsilon rightarrow 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T right-arrow normal infinity> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>T rightarrow infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The Morse spectrum <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript upper M o Baseline left-parenthesis normal upper Phi right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>M</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Sigma _{Mo}(Phi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Phi> <mml:semantics> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:annotation encoding=application/x-tex>Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is then the union over all components <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M subset-of double-struck upper P upper E> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>P</mml:mi> </mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {M}subset mathbb {P}E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This spectrum is a synthesis of the topological approach of Selgrade and Salamon/Zehnder with the spectral concepts based on exponential growth rates, such as the Oseledec̆ spectrum or the dichotomy spectrum of Sacker/Sell. It turns out that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript upper M o Baseline left-parenthesis normal upper Phi right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>M</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Sigma _{Mo}(Phi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains all Lyapunov exponents of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Phi> <mml:semantics> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:annotation encoding=application/x-tex>Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for arbitrary initial values, and the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript upper M o Baseline left-parenthesis script upper M comma normal upper Phi right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>M</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Sigma _{Mo}(mathcal {M},Phi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are closed intervals, whose boundary points are actually Lyapunov exponents. Using the fact that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Phi> <mml:semantics> <mml:mi mathvariant=normal>Φ<!-- Φ --></mml:mi> <mml:annotation encoding=application/x-tex>Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is cohomologous to a subflow of a smooth linear flow on a trivial bundle, one can prove integral representations of all Morse and all Lyapunov exponents via smooth ergodic theory. A comparison with other spectral concepts shows that, in general, the Morse spectrum is contained in the topological spectrum and the dichotomy spectrum, but the spectral sets agree if the induced flow on the base space is chain recurrent. However, even in this case, the associated subbundle decompositions of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be finer for the Morse spectrum than for the dynamical spectrum. If one can show that the (closure of the) Floquet spectrum (i.e. the Lyapunov spectrum based on periodic trajectories in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper P upper E> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>P</mml:mi> </mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {P} E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) agrees with the Morse spectrum, then one obtains equality for the Floquet, the entire Oseledeč, the Lyapunov, and the Morse spectrum. We present an example (flows induced by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>C^{infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> vector fields with hyperbolic chain recurrent components on the projective bundle) where this fact can be shown using a version of Bowen’s Shadowing Lemma." @default.
- W1882052079 created "2016-06-24" @default.
- W1882052079 creator A5003282971 @default.
- W1882052079 creator A5063057216 @default.
- W1882052079 date "1996-01-01" @default.
- W1882052079 modified "2023-10-18" @default.
- W1882052079 title "The Morse spectrum of linear flows on vector bundles" @default.
- W1882052079 cites W1008232178 @default.
- W1882052079 cites W1519171707 @default.
- W1882052079 cites W1589522393 @default.
- W1882052079 cites W162901799 @default.
- W1882052079 cites W1964167808 @default.
- W1882052079 cites W1990291740 @default.
- W1882052079 cites W1994294813 @default.
- W1882052079 cites W2017346284 @default.
- W1882052079 cites W2018617905 @default.
- W1882052079 cites W2055035157 @default.
- W1882052079 cites W2083492229 @default.
- W1882052079 cites W2086983100 @default.
- W1882052079 cites W2089287967 @default.
- W1882052079 cites W2092644172 @default.
- W1882052079 cites W2093286374 @default.
- W1882052079 cites W2107059973 @default.
- W1882052079 cites W2108514101 @default.
- W1882052079 cites W2163620018 @default.
- W1882052079 cites W4213385762 @default.
- W1882052079 cites W4248099157 @default.
- W1882052079 cites W4254619392 @default.
- W1882052079 cites W924842535 @default.
- W1882052079 cites W1508149737 @default.
- W1882052079 doi "https://doi.org/10.1090/s0002-9947-96-01524-3" @default.
- W1882052079 hasPublicationYear "1996" @default.
- W1882052079 type Work @default.
- W1882052079 sameAs 1882052079 @default.
- W1882052079 citedByCount "35" @default.
- W1882052079 countsByYear W18820520792012 @default.
- W1882052079 countsByYear W18820520792014 @default.
- W1882052079 countsByYear W18820520792015 @default.
- W1882052079 countsByYear W18820520792016 @default.
- W1882052079 countsByYear W18820520792018 @default.
- W1882052079 countsByYear W18820520792022 @default.
- W1882052079 crossrefType "journal-article" @default.
- W1882052079 hasAuthorship W1882052079A5003282971 @default.
- W1882052079 hasAuthorship W1882052079A5063057216 @default.
- W1882052079 hasBestOaLocation W18820520791 @default.
- W1882052079 hasConcept C11413529 @default.
- W1882052079 hasConcept C154945302 @default.
- W1882052079 hasConcept C2776321320 @default.
- W1882052079 hasConcept C33923547 @default.
- W1882052079 hasConcept C41008148 @default.
- W1882052079 hasConceptScore W1882052079C11413529 @default.
- W1882052079 hasConceptScore W1882052079C154945302 @default.
- W1882052079 hasConceptScore W1882052079C2776321320 @default.
- W1882052079 hasConceptScore W1882052079C33923547 @default.
- W1882052079 hasConceptScore W1882052079C41008148 @default.
- W1882052079 hasIssue "11" @default.
- W1882052079 hasLocation W18820520791 @default.
- W1882052079 hasLocation W18820520792 @default.
- W1882052079 hasOpenAccess W1882052079 @default.
- W1882052079 hasPrimaryLocation W18820520791 @default.
- W1882052079 hasRelatedWork W1490908374 @default.
- W1882052079 hasRelatedWork W151193258 @default.
- W1882052079 hasRelatedWork W1529400504 @default.
- W1882052079 hasRelatedWork W1607472309 @default.
- W1882052079 hasRelatedWork W1871911958 @default.
- W1882052079 hasRelatedWork W1892467659 @default.
- W1882052079 hasRelatedWork W2348710178 @default.
- W1882052079 hasRelatedWork W2401909756 @default.
- W1882052079 hasRelatedWork W2808586768 @default.
- W1882052079 hasRelatedWork W2998403542 @default.
- W1882052079 hasVolume "348" @default.
- W1882052079 isParatext "false" @default.
- W1882052079 isRetracted "false" @default.
- W1882052079 magId "1882052079" @default.
- W1882052079 workType "article" @default.