Matches in SemOpenAlex for { <https://semopenalex.org/work/W1884075051> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1884075051 abstract "The feedforward neural networks, including multiple layer perceptron (MLP) and radial basis function network (RBFN), are the most widely used networks due to their rapid training, generality, and simplicity. For RBFN, a traditional training algorithm consists of two stages: first learning in the hidden layer, which is typically performed using an unsupervised method such as a clustering algorithm; this is followed by a supervised learning in the output layer, such as recursive least squares (RLS) algorithms. Such a training algorithm has several drawbacks, including improper selection of RBF centers and over-size problem of the network in the first stage and ill-condition in the second. This paper proposes a new clustering algorithm based on constructing an augmented vector consisting of both input and output, and for training the RBFN using a U-D factorization based RLS algorithm which is superior to the standard RLS algorithm in convergence rate, numerical stability and accuracy of the training. The performance between RBFN and MLP with a sigmoidal function is also compared via simulation examples." @default.
- W1884075051 created "2016-06-24" @default.
- W1884075051 creator A5040617247 @default.
- W1884075051 creator A5061379171 @default.
- W1884075051 date "2002-12-24" @default.
- W1884075051 modified "2023-09-22" @default.
- W1884075051 title "Hybrid training of RBF networks with application to nonlinear systems identification" @default.
- W1884075051 cites W1969705022 @default.
- W1884075051 cites W2009334577 @default.
- W1884075051 cites W2098398123 @default.
- W1884075051 cites W2103496339 @default.
- W1884075051 cites W2138484437 @default.
- W1884075051 cites W2144899899 @default.
- W1884075051 cites W2149350706 @default.
- W1884075051 cites W2151210472 @default.
- W1884075051 cites W2154228396 @default.
- W1884075051 cites W2171277043 @default.
- W1884075051 doi "https://doi.org/10.1109/cdc.1996.574582" @default.
- W1884075051 hasPublicationYear "2002" @default.
- W1884075051 type Work @default.
- W1884075051 sameAs 1884075051 @default.
- W1884075051 citedByCount "7" @default.
- W1884075051 countsByYear W18840750512013 @default.
- W1884075051 countsByYear W18840750512017 @default.
- W1884075051 countsByYear W18840750512020 @default.
- W1884075051 countsByYear W18840750512021 @default.
- W1884075051 crossrefType "proceedings-article" @default.
- W1884075051 hasAuthorship W1884075051A5040617247 @default.
- W1884075051 hasAuthorship W1884075051A5061379171 @default.
- W1884075051 hasConcept C102248274 @default.
- W1884075051 hasConcept C112972136 @default.
- W1884075051 hasConcept C11413529 @default.
- W1884075051 hasConcept C119857082 @default.
- W1884075051 hasConcept C132917294 @default.
- W1884075051 hasConcept C145249878 @default.
- W1884075051 hasConcept C153180895 @default.
- W1884075051 hasConcept C154945302 @default.
- W1884075051 hasConcept C155032097 @default.
- W1884075051 hasConcept C179717631 @default.
- W1884075051 hasConcept C41008148 @default.
- W1884075051 hasConcept C50644808 @default.
- W1884075051 hasConcept C60908668 @default.
- W1884075051 hasConcept C73555534 @default.
- W1884075051 hasConcept C81388566 @default.
- W1884075051 hasConcept C98856871 @default.
- W1884075051 hasConceptScore W1884075051C102248274 @default.
- W1884075051 hasConceptScore W1884075051C112972136 @default.
- W1884075051 hasConceptScore W1884075051C11413529 @default.
- W1884075051 hasConceptScore W1884075051C119857082 @default.
- W1884075051 hasConceptScore W1884075051C132917294 @default.
- W1884075051 hasConceptScore W1884075051C145249878 @default.
- W1884075051 hasConceptScore W1884075051C153180895 @default.
- W1884075051 hasConceptScore W1884075051C154945302 @default.
- W1884075051 hasConceptScore W1884075051C155032097 @default.
- W1884075051 hasConceptScore W1884075051C179717631 @default.
- W1884075051 hasConceptScore W1884075051C41008148 @default.
- W1884075051 hasConceptScore W1884075051C50644808 @default.
- W1884075051 hasConceptScore W1884075051C60908668 @default.
- W1884075051 hasConceptScore W1884075051C73555534 @default.
- W1884075051 hasConceptScore W1884075051C81388566 @default.
- W1884075051 hasConceptScore W1884075051C98856871 @default.
- W1884075051 hasLocation W18840750511 @default.
- W1884075051 hasOpenAccess W1884075051 @default.
- W1884075051 hasPrimaryLocation W18840750511 @default.
- W1884075051 hasRelatedWork W1505667787 @default.
- W1884075051 hasRelatedWork W1821619690 @default.
- W1884075051 hasRelatedWork W2031087036 @default.
- W1884075051 hasRelatedWork W2076835685 @default.
- W1884075051 hasRelatedWork W2107415731 @default.
- W1884075051 hasRelatedWork W2107878007 @default.
- W1884075051 hasRelatedWork W2136339922 @default.
- W1884075051 hasRelatedWork W2141674371 @default.
- W1884075051 hasRelatedWork W2155761659 @default.
- W1884075051 hasRelatedWork W2461182283 @default.
- W1884075051 hasRelatedWork W2979796882 @default.
- W1884075051 hasRelatedWork W3011981439 @default.
- W1884075051 hasRelatedWork W3122125628 @default.
- W1884075051 hasRelatedWork W3124003422 @default.
- W1884075051 hasRelatedWork W3142753482 @default.
- W1884075051 hasRelatedWork W3150525519 @default.
- W1884075051 hasRelatedWork W315246200 @default.
- W1884075051 hasRelatedWork W3208473306 @default.
- W1884075051 hasRelatedWork W840057350 @default.
- W1884075051 hasRelatedWork W2312917925 @default.
- W1884075051 isParatext "false" @default.
- W1884075051 isRetracted "false" @default.
- W1884075051 magId "1884075051" @default.
- W1884075051 workType "article" @default.