Matches in SemOpenAlex for { <https://semopenalex.org/work/W188460265> ?p ?o ?g. }
- W188460265 endingPage "248" @default.
- W188460265 startingPage "241" @default.
- W188460265 abstract "The outlier detection problem has important applications in the field of medical research. Clinical databases have accumulated large quantities of information about patients and their medical conditions. In this study, the data mining techniques are used to search for relationships in a large clinical database. Relationships and patterns within this data could provide new medical knowledge. The main objective of this paper is to detect the outliers and identify the influence factor in the diabetes symptoms of the patient using data mining techniques. Results are illustrated numerically and graphically. Outlier detection is a very important concept in the medical data analysis. The complex relationships that appear with regard to diabetic symptoms of the patient, diagnoses and behavior are the most promising areas of data mining. A data base may contain data objects that do not comply with the general behavior of the data. These data objects are outlier and the analysis of outlier data is referred to as outlier mining. Data mining is about finding new information from a large group of data. The problem of outlier detection for data mining is a rich area of research because the sequences are various types and outliers in sequences can be defined in multiple ways and hence there are different problem formulations. Most data mining methods discard outliers as noise or exceptions. The handling of outlier observations in a data set is one of the most important tasks in data pre-processing because of two reasons. First, outlier observations can have a considerable influence on the results of an analysis. Second, outliers are often measurement or recording errors, some of them can represent phenomena of interest, something significant from the viewpoint of the application domain. Some classical examples for inward procedures have given Hawkins (12) and Barnett and Lewis (2). Factor Analysis is useful for understanding the underlying reasons for the correlations among a group of variables. The main application of factor analytic technique is to reduce the number of variables and to detect structure in the relationships among variables that classify variables." @default.
- W188460265 created "2016-06-24" @default.
- W188460265 creator A5001900354 @default.
- W188460265 creator A5003855745 @default.
- W188460265 creator A5089258450 @default.
- W188460265 date "2014-01-01" @default.
- W188460265 modified "2023-10-01" @default.
- W188460265 title "Identification of Outliers in Medical Diagnostic System Using Data Mining Techniques" @default.
- W188460265 cites W127398482 @default.
- W188460265 cites W1970655212 @default.
- W188460265 cites W1989638282 @default.
- W188460265 cites W1990643970 @default.
- W188460265 cites W2006533296 @default.
- W188460265 cites W2049058890 @default.
- W188460265 cites W2063276423 @default.
- W188460265 cites W2069051541 @default.
- W188460265 cites W2074937039 @default.
- W188460265 cites W2084416969 @default.
- W188460265 cites W2107554480 @default.
- W188460265 cites W2108360982 @default.
- W188460265 cites W2119315254 @default.
- W188460265 cites W2120236791 @default.
- W188460265 cites W2132996843 @default.
- W188460265 cites W2137130182 @default.
- W188460265 cites W2169217090 @default.
- W188460265 cites W3146459094 @default.
- W188460265 cites W3157407122 @default.
- W188460265 cites W335157436 @default.
- W188460265 hasPublicationYear "2014" @default.
- W188460265 type Work @default.
- W188460265 sameAs 188460265 @default.
- W188460265 citedByCount "3" @default.
- W188460265 countsByYear W1884602652015 @default.
- W188460265 countsByYear W1884602652016 @default.
- W188460265 countsByYear W1884602652017 @default.
- W188460265 crossrefType "journal-article" @default.
- W188460265 hasAuthorship W188460265A5001900354 @default.
- W188460265 hasAuthorship W188460265A5003855745 @default.
- W188460265 hasAuthorship W188460265A5089258450 @default.
- W188460265 hasConcept C116834253 @default.
- W188460265 hasConcept C124101348 @default.
- W188460265 hasConcept C142724271 @default.
- W188460265 hasConcept C154945302 @default.
- W188460265 hasConcept C177264268 @default.
- W188460265 hasConcept C199360897 @default.
- W188460265 hasConcept C202444582 @default.
- W188460265 hasConcept C33923547 @default.
- W188460265 hasConcept C41008148 @default.
- W188460265 hasConcept C534262118 @default.
- W188460265 hasConcept C58489278 @default.
- W188460265 hasConcept C59822182 @default.
- W188460265 hasConcept C71924100 @default.
- W188460265 hasConcept C739882 @default.
- W188460265 hasConcept C79337645 @default.
- W188460265 hasConcept C86803240 @default.
- W188460265 hasConcept C9652623 @default.
- W188460265 hasConceptScore W188460265C116834253 @default.
- W188460265 hasConceptScore W188460265C124101348 @default.
- W188460265 hasConceptScore W188460265C142724271 @default.
- W188460265 hasConceptScore W188460265C154945302 @default.
- W188460265 hasConceptScore W188460265C177264268 @default.
- W188460265 hasConceptScore W188460265C199360897 @default.
- W188460265 hasConceptScore W188460265C202444582 @default.
- W188460265 hasConceptScore W188460265C33923547 @default.
- W188460265 hasConceptScore W188460265C41008148 @default.
- W188460265 hasConceptScore W188460265C534262118 @default.
- W188460265 hasConceptScore W188460265C58489278 @default.
- W188460265 hasConceptScore W188460265C59822182 @default.
- W188460265 hasConceptScore W188460265C71924100 @default.
- W188460265 hasConceptScore W188460265C739882 @default.
- W188460265 hasConceptScore W188460265C79337645 @default.
- W188460265 hasConceptScore W188460265C86803240 @default.
- W188460265 hasConceptScore W188460265C9652623 @default.
- W188460265 hasIssue "6" @default.
- W188460265 hasLocation W1884602651 @default.
- W188460265 hasOpenAccess W188460265 @default.
- W188460265 hasPrimaryLocation W1884602651 @default.
- W188460265 hasRelatedWork W1518065142 @default.
- W188460265 hasRelatedWork W1556666131 @default.
- W188460265 hasRelatedWork W1572006309 @default.
- W188460265 hasRelatedWork W1706867084 @default.
- W188460265 hasRelatedWork W1991959600 @default.
- W188460265 hasRelatedWork W2157477650 @default.
- W188460265 hasRelatedWork W2234974704 @default.
- W188460265 hasRelatedWork W2355093432 @default.
- W188460265 hasRelatedWork W2360760793 @default.
- W188460265 hasRelatedWork W2364424764 @default.
- W188460265 hasRelatedWork W2394517760 @default.
- W188460265 hasRelatedWork W2610331016 @default.
- W188460265 hasRelatedWork W2909448996 @default.
- W188460265 hasRelatedWork W2936342010 @default.
- W188460265 hasRelatedWork W3023130939 @default.
- W188460265 hasRelatedWork W3157863688 @default.
- W188460265 hasRelatedWork W3170538410 @default.
- W188460265 hasRelatedWork W3197399507 @default.
- W188460265 hasRelatedWork W90581918 @default.
- W188460265 hasRelatedWork W2495398879 @default.
- W188460265 hasVolume "4" @default.