Matches in SemOpenAlex for { <https://semopenalex.org/work/W1886138972> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1886138972 abstract "We present an approximation scheme for optimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global lin- ear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Uniform sparsest cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(r/ε2)</sup> with approximation ratio (1+ε)/min{1,λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>r</sub> }, where λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>r</sub> is the r'th smallest eigenvalue of the normalized graph Laplacian L. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-order terms of the stipulated bound. Our results imply (1 + O(ε)) factor approximation in time n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(r*/ε2)</sup> where r* is the number of eigenvalues of L smaller than 1 - ε. This perhaps gives some indication as to why even showing mere APX-hardness for these problems has been elusive, since the reduction must produce graphs with a slowly growing spectrum (and classes like planar graphs which are known to have such a spectral property often admit good algorithms owing to their nice structure). For Unique Games, we give a factor (1 + (2+ε)/λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>r</sub> ) approximation for minimizing the number of unsatisfied constraints in n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>O(r/ε)</sup> time. This improves an earlier bound for solving Unique Games on expanders, and also shows that Lasserre SDPs are powerful enough to solve well-known integrality gap instances for the basic SDP. We also give an algorithm for independent sets in graphs that performs well when the Laplacian does not have too many eigenvalues bigger than 1 + o(1)." @default.
- W1886138972 created "2016-06-24" @default.
- W1886138972 creator A5068388812 @default.
- W1886138972 creator A5086919065 @default.
- W1886138972 date "2011-10-01" @default.
- W1886138972 modified "2023-09-26" @default.
- W1886138972 title "Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with PSD Objectives" @default.
- W1886138972 cites W129224317 @default.
- W1886138972 cites W1511070007 @default.
- W1886138972 cites W1608352849 @default.
- W1886138972 cites W1886138972 @default.
- W1886138972 cites W1997672673 @default.
- W1886138972 cites W1999032440 @default.
- W1886138972 cites W2002025272 @default.
- W1886138972 cites W2019404063 @default.
- W1886138972 cites W2024654848 @default.
- W1886138972 cites W2072802070 @default.
- W1886138972 cites W2088844265 @default.
- W1886138972 cites W2089135543 @default.
- W1886138972 cites W2091602684 @default.
- W1886138972 cites W2095315734 @default.
- W1886138972 cites W2107052785 @default.
- W1886138972 cites W2110871651 @default.
- W1886138972 cites W2146489710 @default.
- W1886138972 cites W2148012376 @default.
- W1886138972 cites W2155618818 @default.
- W1886138972 cites W2156792066 @default.
- W1886138972 cites W2157316274 @default.
- W1886138972 cites W2163925208 @default.
- W1886138972 cites W2619061098 @default.
- W1886138972 cites W2962970455 @default.
- W1886138972 cites W2963487913 @default.
- W1886138972 cites W3141099616 @default.
- W1886138972 doi "https://doi.org/10.1109/focs.2011.36" @default.
- W1886138972 hasPublicationYear "2011" @default.
- W1886138972 type Work @default.
- W1886138972 sameAs 1886138972 @default.
- W1886138972 citedByCount "99" @default.
- W1886138972 countsByYear W18861389722012 @default.
- W1886138972 countsByYear W18861389722013 @default.
- W1886138972 countsByYear W18861389722014 @default.
- W1886138972 countsByYear W18861389722015 @default.
- W1886138972 countsByYear W18861389722016 @default.
- W1886138972 countsByYear W18861389722017 @default.
- W1886138972 countsByYear W18861389722018 @default.
- W1886138972 countsByYear W18861389722019 @default.
- W1886138972 countsByYear W18861389722020 @default.
- W1886138972 countsByYear W18861389722021 @default.
- W1886138972 countsByYear W18861389722022 @default.
- W1886138972 countsByYear W18861389722023 @default.
- W1886138972 crossrefType "proceedings-article" @default.
- W1886138972 hasAuthorship W1886138972A5068388812 @default.
- W1886138972 hasAuthorship W1886138972A5086919065 @default.
- W1886138972 hasConcept C101901036 @default.
- W1886138972 hasConcept C111919701 @default.
- W1886138972 hasConcept C114614502 @default.
- W1886138972 hasConcept C115178988 @default.
- W1886138972 hasConcept C118615104 @default.
- W1886138972 hasConcept C121332964 @default.
- W1886138972 hasConcept C126255220 @default.
- W1886138972 hasConcept C132525143 @default.
- W1886138972 hasConcept C136625980 @default.
- W1886138972 hasConcept C148764684 @default.
- W1886138972 hasConcept C158693339 @default.
- W1886138972 hasConcept C33923547 @default.
- W1886138972 hasConcept C41008148 @default.
- W1886138972 hasConcept C62520636 @default.
- W1886138972 hasConceptScore W1886138972C101901036 @default.
- W1886138972 hasConceptScore W1886138972C111919701 @default.
- W1886138972 hasConceptScore W1886138972C114614502 @default.
- W1886138972 hasConceptScore W1886138972C115178988 @default.
- W1886138972 hasConceptScore W1886138972C118615104 @default.
- W1886138972 hasConceptScore W1886138972C121332964 @default.
- W1886138972 hasConceptScore W1886138972C126255220 @default.
- W1886138972 hasConceptScore W1886138972C132525143 @default.
- W1886138972 hasConceptScore W1886138972C136625980 @default.
- W1886138972 hasConceptScore W1886138972C148764684 @default.
- W1886138972 hasConceptScore W1886138972C158693339 @default.
- W1886138972 hasConceptScore W1886138972C33923547 @default.
- W1886138972 hasConceptScore W1886138972C41008148 @default.
- W1886138972 hasConceptScore W1886138972C62520636 @default.
- W1886138972 hasLocation W18861389721 @default.
- W1886138972 hasOpenAccess W1886138972 @default.
- W1886138972 hasPrimaryLocation W18861389721 @default.
- W1886138972 hasRelatedWork W1513909467 @default.
- W1886138972 hasRelatedWork W1540861457 @default.
- W1886138972 hasRelatedWork W1832592836 @default.
- W1886138972 hasRelatedWork W2002849997 @default.
- W1886138972 hasRelatedWork W2008289509 @default.
- W1886138972 hasRelatedWork W2088008046 @default.
- W1886138972 hasRelatedWork W3127344537 @default.
- W1886138972 hasRelatedWork W4289106665 @default.
- W1886138972 hasRelatedWork W4293876796 @default.
- W1886138972 hasRelatedWork W4297890103 @default.
- W1886138972 isParatext "false" @default.
- W1886138972 isRetracted "false" @default.
- W1886138972 magId "1886138972" @default.
- W1886138972 workType "article" @default.