Matches in SemOpenAlex for { <https://semopenalex.org/work/W1886530410> ?p ?o ?g. }
- W1886530410 abstract "SUMMARYRarefied gas flows typically encountered in MEMS systems are numerically investigated in this study. Fluid flow and heat transfer in rectangular and circular microchannels within the slip flow regime are studied in detail by our recently developed implicit, incompressible, hybrid (finite element/finite volume) flow solver. The hybrid flow solver methodology is based on the pressure correction or projection method, which involves a fractional step approach to obtain an intermediate velocity field by solving the original momentum equations with the matrix-free, implicit, cell-centered finite volume method. The Poisson equation resulting from the fractional step approach is then solved by node based Galerkin finite element method for an auxiliary variable, which is closely related to pressure and is used to update the velocity field and pressure field. The hybrid flow solver has been extended for applications in MEMS by incorporating first order slip flow boundary conditions. Extended inlet boundary conditions are used for rectangular microchannels, whereas classical inlet boundary conditions are used for circular microchannels to emphasize on the entrance region singularity. In this study, rarefaction effects characterized by Knudsen number (Kn) in the range of 0 ⩽ Kn ⩽ 0.1 are numerically investigated for rectangular and circular microchannels with constant wall temperature. Extensive validations of our hybrid code are performed with available analytical solutions and experimental data for fully developed velocity profiles, friction factors, and Nusselt numbers. The influence of rarefaction on rectangular microchannels with aspect ratios between 0 and 1 is thoroughly investigated. Friction coefficients are found to be decreasing with increasing Knudsen number for both rectangular and circular microchannels. The reduction in the friction coefficients is more pronounced for rectangular microchannels with smaller aspect ratios. Effects of rarefaction and gas-wall surface interaction parameter on heat transfer are analyzed for rectangular and circular microchannels. For most engineering applications, heat transfer is decreased with rarefaction. However, for fluids with very large Prandtl numbers, velocity slip dominates the temperature jump resulting in an increase in heat transfer with rarefaction. Depending on the gas-wall surface interaction properties, extreme reductions in the Nusselt number can occur. Present results confirm the existence of a transition point below and above wherein heat transfer enhancement and reduction can occur. Copyright © 2011 John Wiley & Sons, Ltd." @default.
- W1886530410 created "2016-06-24" @default.
- W1886530410 creator A5006467944 @default.
- W1886530410 creator A5030021739 @default.
- W1886530410 date "2011-06-22" @default.
- W1886530410 modified "2023-09-24" @default.
- W1886530410 title "Slip flow and heat transfer in rectangular and circular microchannels using hybrid FE/FV method" @default.
- W1886530410 cites W1970430252 @default.
- W1886530410 cites W1982363011 @default.
- W1886530410 cites W1984119573 @default.
- W1886530410 cites W1987098128 @default.
- W1886530410 cites W1987349437 @default.
- W1886530410 cites W2013024796 @default.
- W1886530410 cites W2016288301 @default.
- W1886530410 cites W2017318376 @default.
- W1886530410 cites W2020646731 @default.
- W1886530410 cites W2021266644 @default.
- W1886530410 cites W2023336793 @default.
- W1886530410 cites W2029653964 @default.
- W1886530410 cites W2030526956 @default.
- W1886530410 cites W2061434100 @default.
- W1886530410 cites W2062755566 @default.
- W1886530410 cites W2071948857 @default.
- W1886530410 cites W2073505460 @default.
- W1886530410 cites W2084386683 @default.
- W1886530410 cites W2086025153 @default.
- W1886530410 cites W2108507820 @default.
- W1886530410 cites W2129995804 @default.
- W1886530410 cites W2130946398 @default.
- W1886530410 cites W2147237674 @default.
- W1886530410 cites W2152855913 @default.
- W1886530410 cites W4236974991 @default.
- W1886530410 doi "https://doi.org/10.1002/nme.3231" @default.
- W1886530410 hasPublicationYear "2011" @default.
- W1886530410 type Work @default.
- W1886530410 sameAs 1886530410 @default.
- W1886530410 citedByCount "7" @default.
- W1886530410 countsByYear W18865304102013 @default.
- W1886530410 countsByYear W18865304102014 @default.
- W1886530410 countsByYear W18865304102016 @default.
- W1886530410 countsByYear W18865304102017 @default.
- W1886530410 countsByYear W18865304102020 @default.
- W1886530410 crossrefType "journal-article" @default.
- W1886530410 hasAuthorship W1886530410A5006467944 @default.
- W1886530410 hasAuthorship W1886530410A5030021739 @default.
- W1886530410 hasConcept C121332964 @default.
- W1886530410 hasConcept C121838276 @default.
- W1886530410 hasConcept C130230704 @default.
- W1886530410 hasConcept C134306372 @default.
- W1886530410 hasConcept C135628077 @default.
- W1886530410 hasConcept C182310444 @default.
- W1886530410 hasConcept C182748727 @default.
- W1886530410 hasConcept C192562407 @default.
- W1886530410 hasConcept C195268267 @default.
- W1886530410 hasConcept C196558001 @default.
- W1886530410 hasConcept C33923547 @default.
- W1886530410 hasConcept C50478463 @default.
- W1886530410 hasConcept C50517652 @default.
- W1886530410 hasConcept C57879066 @default.
- W1886530410 hasConcept C63662833 @default.
- W1886530410 hasConcept C65550862 @default.
- W1886530410 hasConcept C97355855 @default.
- W1886530410 hasConceptScore W1886530410C121332964 @default.
- W1886530410 hasConceptScore W1886530410C121838276 @default.
- W1886530410 hasConceptScore W1886530410C130230704 @default.
- W1886530410 hasConceptScore W1886530410C134306372 @default.
- W1886530410 hasConceptScore W1886530410C135628077 @default.
- W1886530410 hasConceptScore W1886530410C182310444 @default.
- W1886530410 hasConceptScore W1886530410C182748727 @default.
- W1886530410 hasConceptScore W1886530410C192562407 @default.
- W1886530410 hasConceptScore W1886530410C195268267 @default.
- W1886530410 hasConceptScore W1886530410C196558001 @default.
- W1886530410 hasConceptScore W1886530410C33923547 @default.
- W1886530410 hasConceptScore W1886530410C50478463 @default.
- W1886530410 hasConceptScore W1886530410C50517652 @default.
- W1886530410 hasConceptScore W1886530410C57879066 @default.
- W1886530410 hasConceptScore W1886530410C63662833 @default.
- W1886530410 hasConceptScore W1886530410C65550862 @default.
- W1886530410 hasConceptScore W1886530410C97355855 @default.
- W1886530410 hasLocation W18865304101 @default.
- W1886530410 hasOpenAccess W1886530410 @default.
- W1886530410 hasPrimaryLocation W18865304101 @default.
- W1886530410 hasRelatedWork W1827188913 @default.
- W1886530410 hasRelatedWork W1964301906 @default.
- W1886530410 hasRelatedWork W2023251350 @default.
- W1886530410 hasRelatedWork W2033654650 @default.
- W1886530410 hasRelatedWork W2076473549 @default.
- W1886530410 hasRelatedWork W2082451673 @default.
- W1886530410 hasRelatedWork W2093717891 @default.
- W1886530410 hasRelatedWork W2108507820 @default.
- W1886530410 hasRelatedWork W2244160104 @default.
- W1886530410 hasRelatedWork W2321268261 @default.
- W1886530410 hasRelatedWork W2402712559 @default.
- W1886530410 hasRelatedWork W2523200857 @default.
- W1886530410 hasRelatedWork W2781088513 @default.
- W1886530410 hasRelatedWork W2908945606 @default.
- W1886530410 hasRelatedWork W2922075846 @default.
- W1886530410 hasRelatedWork W2945949871 @default.
- W1886530410 hasRelatedWork W2966076536 @default.
- W1886530410 hasRelatedWork W3140501472 @default.