Matches in SemOpenAlex for { <https://semopenalex.org/work/W1887432557> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W1887432557 abstract "The application of nonlinear tools and advanced statistical methods is becoming more prevalent in biomechanical analyses. In a traditional biomechanics laboratory with motion analysis equipment, large amounts of kinematic data can be collected relatively easily. However, a significant gap exists between all the data that are collected and the data that are actually analyzed. Because movements occur over a period of time, whether seconds or minutes, each movement is represented by a continuous series of kinematic data (e.g., 60 or 120 observations per second). Using standard analytic methods, the continuous data associated with each movement are often reduced to a single discrete number. This reduction to a single summary value, such as a peak flexion, extension, or range of motion, excludes potentially valuable information. Reducing a curve representing hip motion during gait to a single range of motion value, for example, precludes the analysis of the entire movement pattern or the timing of the movement. A handful of investigations have recognized this limitation and have begun using functions to maintain the shape and timing of the movement in the analysis. The primary purpose of this chapter is to introduce an emerging collection of statistical methods called Functional Data Analysis (FDA). FDA is distinct from traditional analytic methods because how data changes continuously over time can be assessed. Therefore, information in continuous signals can be retained, such as changes in joint angles or in landmark positions during a movement task. FDA can be used for both exploratory and hypothesis driven analyses with traditional multivariate statistical methods that have been modified for functional predictor and response variables. Although representing motion data as a set of functions is not new to biomechanics analyses (Chester & Wrigley, 2008; Deluzio & Astephen, 2007; Landry et al., 2007; Lee et al., 2009; Sadeghi et al., 2002; 2000), statistical methods developed specifically for analyzing these functions have not been available. More recently, FDAmethods have been usedwithin biomechanics to studymastication (Crane et al., 2010), back pain (Page et al., 2006), as well as age, gender, and speed effects on walking (Roislien et al., 2009). Given the interest in and need for treating motion data as functions, it is important that methods for analyzing a set a functions using emerging statistical methods are brought to the attention of those in the biomechanics community. Although several excellent references exist for Functional Data Analysis (Ramsay, 2000; Ramsay et al., 2009; Ramsay & Silverman, 2002; 2005) there are important issues for biomechanists to be aware of when implementing this set of statistical tools. Therefore, the aims of this chapter are to provide an overview of the steps associated with FDA, to focus on 4" @default.
- W1887432557 created "2016-06-24" @default.
- W1887432557 creator A5004737896 @default.
- W1887432557 creator A5010014841 @default.
- W1887432557 creator A5040248352 @default.
- W1887432557 creator A5088554904 @default.
- W1887432557 date "2011-11-25" @default.
- W1887432557 modified "2023-10-14" @default.
- W1887432557 title "Functional Data Analysis for Biomechanics" @default.
- W1887432557 cites W2013254723 @default.
- W1887432557 cites W2021799429 @default.
- W1887432557 cites W2023270971 @default.
- W1887432557 cites W2024547870 @default.
- W1887432557 cites W2048874204 @default.
- W1887432557 cites W2049874970 @default.
- W1887432557 cites W2060138232 @default.
- W1887432557 cites W2082981966 @default.
- W1887432557 cites W2103632971 @default.
- W1887432557 cites W2127562591 @default.
- W1887432557 cites W2165040656 @default.
- W1887432557 doi "https://doi.org/10.5772/22382" @default.
- W1887432557 hasPublicationYear "2011" @default.
- W1887432557 type Work @default.
- W1887432557 sameAs 1887432557 @default.
- W1887432557 citedByCount "7" @default.
- W1887432557 countsByYear W18874325572016 @default.
- W1887432557 countsByYear W18874325572017 @default.
- W1887432557 countsByYear W18874325572018 @default.
- W1887432557 countsByYear W18874325572020 @default.
- W1887432557 countsByYear W18874325572021 @default.
- W1887432557 crossrefType "book-chapter" @default.
- W1887432557 hasAuthorship W1887432557A5004737896 @default.
- W1887432557 hasAuthorship W1887432557A5010014841 @default.
- W1887432557 hasAuthorship W1887432557A5040248352 @default.
- W1887432557 hasAuthorship W1887432557A5088554904 @default.
- W1887432557 hasBestOaLocation W18874325571 @default.
- W1887432557 hasConcept C105702510 @default.
- W1887432557 hasConcept C170700871 @default.
- W1887432557 hasConcept C71924100 @default.
- W1887432557 hasConceptScore W1887432557C105702510 @default.
- W1887432557 hasConceptScore W1887432557C170700871 @default.
- W1887432557 hasConceptScore W1887432557C71924100 @default.
- W1887432557 hasLocation W18874325571 @default.
- W1887432557 hasLocation W18874325572 @default.
- W1887432557 hasOpenAccess W1887432557 @default.
- W1887432557 hasPrimaryLocation W18874325571 @default.
- W1887432557 hasRelatedWork W1537355970 @default.
- W1887432557 hasRelatedWork W2183559900 @default.
- W1887432557 hasRelatedWork W2628083895 @default.
- W1887432557 hasRelatedWork W2668228314 @default.
- W1887432557 hasRelatedWork W2722458086 @default.
- W1887432557 hasRelatedWork W3014307317 @default.
- W1887432557 hasRelatedWork W433134684 @default.
- W1887432557 hasRelatedWork W581996473 @default.
- W1887432557 hasRelatedWork W584964635 @default.
- W1887432557 hasRelatedWork W6628501 @default.
- W1887432557 isParatext "false" @default.
- W1887432557 isRetracted "false" @default.
- W1887432557 magId "1887432557" @default.
- W1887432557 workType "book-chapter" @default.