Matches in SemOpenAlex for { <https://semopenalex.org/work/W1891117966> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1891117966 abstract "We discuss the dimensional characterization of the solutions space of a formally integrable system of partial differential equations and provide certain formulas for calculations of these dimensional quantities. 1. Introduction: what is the solutions space? Let E be a system of partial differential equations (PDEs). We would like to discuss the dimensional characterization of its solutions space. However it is not agreed upon what should be called a solution. We can choose between global or local and even formal solutions or jet-solutions to a certain order. Hyperbolic systems hint us about shock waves as multiple- valued solutions and elliptic PDEs suggest generalized functions or sections. A choice of category, i.e. finitely differentiable C k , smooth C ∞ or analytic C ω together with many others, plays a crucial role. For instance there are systems of PDEs that have solutions in one category, but lacks them in another (we can name the famous Lewy's example of a formally integrable PDE without smooth or analytic solutions, (L)). In this paper we restrict to local or even formal solutions. The reason is lack of reasonable existence and uniqueness theorems (in the case of global solutions even for ODEs). In addition this helps to overcome difficulties with blow-ups and multi-values. If the category is analytic, then Cartan-Kahler theorem (Ka) guarantees local solutions of formally integrable equations (Go) and even predicts their quantity. We then measure it by certain dimension characteristics. If the category is smooth, formal integrability yields existence of solutions only if coupled with certain additional conditions (see for instance (Ho)). Thus it is easier in this case to turn to formal solutions, which in regular situations give the same dimension characteristics. With this vague idea let us call the space of solutions Sol(E). With this approach it is easy to impose a topology on the solutions space. However we shall encounter the situations, when the topological structure is non-uniform. To illustrate the above discussion, let's consider some model ODEs (in which case we possess existence and uniqueness theorem). The space of local 2000 Mathematics Subject Classification. Primary: 35N10, 58A20, 58H10; Secondary: 35A30." @default.
- W1891117966 created "2016-06-24" @default.
- W1891117966 creator A5001273102 @default.
- W1891117966 creator A5025226237 @default.
- W1891117966 date "2006-10-26" @default.
- W1891117966 modified "2023-09-27" @default.
- W1891117966 title "Dimension of the solutions space of PDEs" @default.
- W1891117966 cites W1495410784 @default.
- W1891117966 cites W1565577121 @default.
- W1891117966 cites W1590796295 @default.
- W1891117966 cites W1662712816 @default.
- W1891117966 cites W1984729287 @default.
- W1891117966 cites W1994366596 @default.
- W1891117966 cites W2019771377 @default.
- W1891117966 cites W2033287169 @default.
- W1891117966 cites W2040721207 @default.
- W1891117966 cites W2049707341 @default.
- W1891117966 cites W2081570691 @default.
- W1891117966 cites W2323874343 @default.
- W1891117966 cites W2331762649 @default.
- W1891117966 cites W2333977823 @default.
- W1891117966 cites W28440811 @default.
- W1891117966 cites W2952793191 @default.
- W1891117966 cites W434331358 @default.
- W1891117966 cites W2050664066 @default.
- W1891117966 hasPublicationYear "2006" @default.
- W1891117966 type Work @default.
- W1891117966 sameAs 1891117966 @default.
- W1891117966 citedByCount "2" @default.
- W1891117966 crossrefType "posted-content" @default.
- W1891117966 hasAuthorship W1891117966A5001273102 @default.
- W1891117966 hasAuthorship W1891117966A5025226237 @default.
- W1891117966 hasConcept C111919701 @default.
- W1891117966 hasConcept C134306372 @default.
- W1891117966 hasConcept C200741047 @default.
- W1891117966 hasConcept C202444582 @default.
- W1891117966 hasConcept C2777021972 @default.
- W1891117966 hasConcept C2778572836 @default.
- W1891117966 hasConcept C33676613 @default.
- W1891117966 hasConcept C33923547 @default.
- W1891117966 hasConcept C41008148 @default.
- W1891117966 hasConcept C54067925 @default.
- W1891117966 hasConcept C93779851 @default.
- W1891117966 hasConceptScore W1891117966C111919701 @default.
- W1891117966 hasConceptScore W1891117966C134306372 @default.
- W1891117966 hasConceptScore W1891117966C200741047 @default.
- W1891117966 hasConceptScore W1891117966C202444582 @default.
- W1891117966 hasConceptScore W1891117966C2777021972 @default.
- W1891117966 hasConceptScore W1891117966C2778572836 @default.
- W1891117966 hasConceptScore W1891117966C33676613 @default.
- W1891117966 hasConceptScore W1891117966C33923547 @default.
- W1891117966 hasConceptScore W1891117966C41008148 @default.
- W1891117966 hasConceptScore W1891117966C54067925 @default.
- W1891117966 hasConceptScore W1891117966C93779851 @default.
- W1891117966 hasLocation W18911179661 @default.
- W1891117966 hasOpenAccess W1891117966 @default.
- W1891117966 hasPrimaryLocation W18911179661 @default.
- W1891117966 hasRelatedWork W121380915 @default.
- W1891117966 hasRelatedWork W1510748770 @default.
- W1891117966 hasRelatedWork W1566576791 @default.
- W1891117966 hasRelatedWork W1667611608 @default.
- W1891117966 hasRelatedWork W1755851404 @default.
- W1891117966 hasRelatedWork W1970375533 @default.
- W1891117966 hasRelatedWork W1971727736 @default.
- W1891117966 hasRelatedWork W1984729287 @default.
- W1891117966 hasRelatedWork W2000722217 @default.
- W1891117966 hasRelatedWork W2019771377 @default.
- W1891117966 hasRelatedWork W2060021295 @default.
- W1891117966 hasRelatedWork W2065369291 @default.
- W1891117966 hasRelatedWork W2067177273 @default.
- W1891117966 hasRelatedWork W2160720998 @default.
- W1891117966 hasRelatedWork W2266634414 @default.
- W1891117966 hasRelatedWork W2272660051 @default.
- W1891117966 hasRelatedWork W2323500172 @default.
- W1891117966 hasRelatedWork W2323559714 @default.
- W1891117966 hasRelatedWork W2505055080 @default.
- W1891117966 hasRelatedWork W2121718430 @default.
- W1891117966 isParatext "false" @default.
- W1891117966 isRetracted "false" @default.
- W1891117966 magId "1891117966" @default.
- W1891117966 workType "article" @default.