Matches in SemOpenAlex for { <https://semopenalex.org/work/W189202401> ?p ?o ?g. }
- W189202401 endingPage "150" @default.
- W189202401 startingPage "95" @default.
- W189202401 abstract "AbstractWe are concerned with the numerical solution of distributed optimal control problems for second order elliptic variational inequalities by adaptive finite element methods. Both the continuous problem as well as its finite element approximations represent subclasses of Mathematical Programs with Equilibrium Constraints (MPECs) for which the optimality conditions are stated by means of stationarity concepts in function space (Hintermüller and Kopacka, SIAM J. Optim. 20:868–902, 2009) and in a discrete, finite dimensional setting (Scheel and Scholtes, Math. Oper. Res. 25:1–22, 2000) such as ((varepsilon)-almost, almost) C- and S-stationarity. With regard to adaptive mesh refinement, in contrast to the work in (Hintermüller, ESAIM Control Optim. Calc. Var., 2012, submitted) which adopts a goal oriented dual weighted approach, we consider standard residual-type a posteriori error estimators. The first main result states that for a sequence of discrete C-stationary points there exists a subsequence converging to an almost C-stationary point, provided the associated sequence of nested finite element spaces is limit dense in its continuous counterpart. As the second main result, we prove the reliability and efficiency of the residual-type a posteriori error estimators. Particular emphasis is put on the approximation of the reliability and efficiency related consistency errors by heuristically motivated computable quantities and on the approximation of the continuous active, strongly active, and inactive sets by their discrete counterparts. A detailed documentation of numerical results for two representative test examples illustrates the performance of the adaptive approach.KeywordsA posteriori error analysisElliptic variational inequalitiesFinite elementsOptimal controlStationarity" @default.
- W189202401 created "2016-06-24" @default.
- W189202401 creator A5009299080 @default.
- W189202401 creator A5017039423 @default.
- W189202401 creator A5062202097 @default.
- W189202401 creator A5086186936 @default.
- W189202401 date "2014-01-01" @default.
- W189202401 modified "2023-10-14" @default.
- W189202401 title "Adaptive Finite Elements for Optimally Controlled Elliptic Variational Inequalities of Obstacle Type" @default.
- W189202401 cites W1516681311 @default.
- W189202401 cites W1543439990 @default.
- W189202401 cites W1604627832 @default.
- W189202401 cites W189202401 @default.
- W189202401 cites W1965489022 @default.
- W189202401 cites W1972053447 @default.
- W189202401 cites W1973889466 @default.
- W189202401 cites W1978704752 @default.
- W189202401 cites W1994026242 @default.
- W189202401 cites W2000066796 @default.
- W189202401 cites W2009985306 @default.
- W189202401 cites W2014303698 @default.
- W189202401 cites W2019045637 @default.
- W189202401 cites W2030580548 @default.
- W189202401 cites W2036884139 @default.
- W189202401 cites W2037678919 @default.
- W189202401 cites W2044627846 @default.
- W189202401 cites W2067986422 @default.
- W189202401 cites W2068874091 @default.
- W189202401 cites W2078191979 @default.
- W189202401 cites W2084132784 @default.
- W189202401 cites W2088130588 @default.
- W189202401 cites W2093581986 @default.
- W189202401 cites W2115494100 @default.
- W189202401 cites W2120757254 @default.
- W189202401 cites W2128722493 @default.
- W189202401 cites W2136973752 @default.
- W189202401 cites W2153562582 @default.
- W189202401 cites W3204708751 @default.
- W189202401 cites W4231147659 @default.
- W189202401 cites W4231500306 @default.
- W189202401 cites W4297803238 @default.
- W189202401 cites W57424976 @default.
- W189202401 doi "https://doi.org/10.1007/978-3-319-08025-3_4" @default.
- W189202401 hasPublicationYear "2014" @default.
- W189202401 type Work @default.
- W189202401 sameAs 189202401 @default.
- W189202401 citedByCount "7" @default.
- W189202401 countsByYear W1892024012014 @default.
- W189202401 countsByYear W1892024012015 @default.
- W189202401 countsByYear W1892024012017 @default.
- W189202401 countsByYear W1892024012018 @default.
- W189202401 countsByYear W1892024012019 @default.
- W189202401 countsByYear W1892024012021 @default.
- W189202401 crossrefType "book-chapter" @default.
- W189202401 hasAuthorship W189202401A5009299080 @default.
- W189202401 hasAuthorship W189202401A5017039423 @default.
- W189202401 hasAuthorship W189202401A5062202097 @default.
- W189202401 hasAuthorship W189202401A5086186936 @default.
- W189202401 hasBestOaLocation W1892024012 @default.
- W189202401 hasConcept C105795698 @default.
- W189202401 hasConcept C111472728 @default.
- W189202401 hasConcept C11413529 @default.
- W189202401 hasConcept C121332964 @default.
- W189202401 hasConcept C126255220 @default.
- W189202401 hasConcept C135628077 @default.
- W189202401 hasConcept C138885662 @default.
- W189202401 hasConcept C155512373 @default.
- W189202401 hasConcept C161999928 @default.
- W189202401 hasConcept C185429906 @default.
- W189202401 hasConcept C2778112365 @default.
- W189202401 hasConcept C28826006 @default.
- W189202401 hasConcept C33923547 @default.
- W189202401 hasConcept C54355233 @default.
- W189202401 hasConcept C75553542 @default.
- W189202401 hasConcept C86803240 @default.
- W189202401 hasConcept C97355855 @default.
- W189202401 hasConceptScore W189202401C105795698 @default.
- W189202401 hasConceptScore W189202401C111472728 @default.
- W189202401 hasConceptScore W189202401C11413529 @default.
- W189202401 hasConceptScore W189202401C121332964 @default.
- W189202401 hasConceptScore W189202401C126255220 @default.
- W189202401 hasConceptScore W189202401C135628077 @default.
- W189202401 hasConceptScore W189202401C138885662 @default.
- W189202401 hasConceptScore W189202401C155512373 @default.
- W189202401 hasConceptScore W189202401C161999928 @default.
- W189202401 hasConceptScore W189202401C185429906 @default.
- W189202401 hasConceptScore W189202401C2778112365 @default.
- W189202401 hasConceptScore W189202401C28826006 @default.
- W189202401 hasConceptScore W189202401C33923547 @default.
- W189202401 hasConceptScore W189202401C54355233 @default.
- W189202401 hasConceptScore W189202401C75553542 @default.
- W189202401 hasConceptScore W189202401C86803240 @default.
- W189202401 hasConceptScore W189202401C97355855 @default.
- W189202401 hasLocation W1892024011 @default.
- W189202401 hasLocation W1892024012 @default.
- W189202401 hasLocation W1892024013 @default.
- W189202401 hasLocation W1892024014 @default.
- W189202401 hasOpenAccess W189202401 @default.