Matches in SemOpenAlex for { <https://semopenalex.org/work/W1892149727> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1892149727 endingPage "21032" @default.
- W1892149727 startingPage "21016" @default.
- W1892149727 abstract "In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods." @default.
- W1892149727 created "2016-06-24" @default.
- W1892149727 creator A5023881129 @default.
- W1892149727 creator A5028978854 @default.
- W1892149727 creator A5034419477 @default.
- W1892149727 creator A5052540474 @default.
- W1892149727 creator A5058898555 @default.
- W1892149727 creator A5062356413 @default.
- W1892149727 creator A5083173630 @default.
- W1892149727 creator A5088699174 @default.
- W1892149727 date "2015-08-27" @default.
- W1892149727 modified "2023-09-27" @default.
- W1892149727 title "Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor" @default.
- W1892149727 cites W178021330 @default.
- W1892149727 cites W2041239017 @default.
- W1892149727 cites W2133196608 @default.
- W1892149727 cites W2153635508 @default.
- W1892149727 doi "https://doi.org/10.3390/s150921016" @default.
- W1892149727 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4610507" @default.
- W1892149727 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26343654" @default.
- W1892149727 hasPublicationYear "2015" @default.
- W1892149727 type Work @default.
- W1892149727 sameAs 1892149727 @default.
- W1892149727 citedByCount "10" @default.
- W1892149727 countsByYear W18921497272016 @default.
- W1892149727 countsByYear W18921497272017 @default.
- W1892149727 countsByYear W18921497272018 @default.
- W1892149727 countsByYear W18921497272019 @default.
- W1892149727 countsByYear W18921497272023 @default.
- W1892149727 crossrefType "journal-article" @default.
- W1892149727 hasAuthorship W1892149727A5023881129 @default.
- W1892149727 hasAuthorship W1892149727A5028978854 @default.
- W1892149727 hasAuthorship W1892149727A5034419477 @default.
- W1892149727 hasAuthorship W1892149727A5052540474 @default.
- W1892149727 hasAuthorship W1892149727A5058898555 @default.
- W1892149727 hasAuthorship W1892149727A5062356413 @default.
- W1892149727 hasAuthorship W1892149727A5083173630 @default.
- W1892149727 hasAuthorship W1892149727A5088699174 @default.
- W1892149727 hasBestOaLocation W18921497271 @default.
- W1892149727 hasConcept C12267149 @default.
- W1892149727 hasConcept C141121606 @default.
- W1892149727 hasConcept C153180895 @default.
- W1892149727 hasConcept C154945302 @default.
- W1892149727 hasConcept C162324750 @default.
- W1892149727 hasConcept C2779681140 @default.
- W1892149727 hasConcept C31972630 @default.
- W1892149727 hasConcept C41008148 @default.
- W1892149727 hasConcept C556758197 @default.
- W1892149727 hasConceptScore W1892149727C12267149 @default.
- W1892149727 hasConceptScore W1892149727C141121606 @default.
- W1892149727 hasConceptScore W1892149727C153180895 @default.
- W1892149727 hasConceptScore W1892149727C154945302 @default.
- W1892149727 hasConceptScore W1892149727C162324750 @default.
- W1892149727 hasConceptScore W1892149727C2779681140 @default.
- W1892149727 hasConceptScore W1892149727C31972630 @default.
- W1892149727 hasConceptScore W1892149727C41008148 @default.
- W1892149727 hasConceptScore W1892149727C556758197 @default.
- W1892149727 hasIssue "9" @default.
- W1892149727 hasLocation W18921497271 @default.
- W1892149727 hasLocation W18921497272 @default.
- W1892149727 hasLocation W18921497273 @default.
- W1892149727 hasLocation W18921497274 @default.
- W1892149727 hasOpenAccess W1892149727 @default.
- W1892149727 hasPrimaryLocation W18921497271 @default.
- W1892149727 hasRelatedWork W2041399278 @default.
- W1892149727 hasRelatedWork W2056016498 @default.
- W1892149727 hasRelatedWork W2136184105 @default.
- W1892149727 hasRelatedWork W2160451891 @default.
- W1892149727 hasRelatedWork W2336974148 @default.
- W1892149727 hasRelatedWork W2389470892 @default.
- W1892149727 hasRelatedWork W3013515612 @default.
- W1892149727 hasRelatedWork W4293087713 @default.
- W1892149727 hasRelatedWork W2187500075 @default.
- W1892149727 hasRelatedWork W2345184372 @default.
- W1892149727 hasVolume "15" @default.
- W1892149727 isParatext "false" @default.
- W1892149727 isRetracted "false" @default.
- W1892149727 magId "1892149727" @default.
- W1892149727 workType "article" @default.