Matches in SemOpenAlex for { <https://semopenalex.org/work/W1894641570> ?p ?o ?g. }
- W1894641570 endingPage "244" @default.
- W1894641570 startingPage "234" @default.
- W1894641570 abstract "Abstract Satellite image time series (SITS) provide spectral–temporal features that describe phenological changes in vegetation over the growing season, which is expected to facilitate the classification of crop types. While most SITS-based crop type classifications were focused on NDVI (normalized difference vegetation index) temporal profiles, less attention has been paid to using the complete image spectral resolution of the time series. In this work we assessed different approaches to SITS-based classification of four major fruit-tree crops in the Maipo Valley, central Chile, during the 2013–14 growing season. We compared four feature sets from a time series comprised of eight cloud-free Landsat-8 images: the full-band SITS, the NDVI and NDWI (normalized difference water index) temporal profiles, and an image stack with all the feature sets combined. State-of-the-art classifiers (linear discriminant analysis, LDA; random forest; and support vector machine) were applied on each feature set at different training sample sizes ( N = 100, 200, 400, 800 and 2291 fields), and classification results were assessed by cross-validation of the misclassification error rate (MER). For all the feature sets overall results were good (MERs ≤ 0.21) although substantially improved classification accuracies were achieved when the full-band SITS was employed (MER 0.14–0.05). Classifications applied on the NDVI temporal profile consistently had the worst performance. For a sample size of 200 fields, LDA using the full-band SITS of image dates 1, 3, 6 and 8 produced the best tradeoff between the number of images and classification accuracy (MER = 0.06), being the green, red, blue and SWIR (short-wave infrared) bands of image date 1 (acquired at the early greenup stage) the most relevant for crop type discrimination. Our results show the importance of considering the complete image spectral resolution for SITS-based crop type classifications as the commonly used NDVI temporal profile and their red and near infrared bands were not found the most significant to discriminate the crop types of interest. Furthermore, in light of the good results obtained, the methodology used here might be transferred to similar agricultural lands cultivated with the same crop types, thus providing a reliable and relatively efficient methodology for creating and updating crop inventories." @default.
- W1894641570 created "2016-06-24" @default.
- W1894641570 creator A5009227241 @default.
- W1894641570 creator A5019118021 @default.
- W1894641570 date "2015-12-01" @default.
- W1894641570 modified "2023-10-06" @default.
- W1894641570 title "Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile" @default.
- W1894641570 cites W1228197641 @default.
- W1894641570 cites W1974110440 @default.
- W1894641570 cites W1978617972 @default.
- W1894641570 cites W1980102245 @default.
- W1894641570 cites W1989649445 @default.
- W1894641570 cites W1990653740 @default.
- W1894641570 cites W1990760463 @default.
- W1894641570 cites W1991804653 @default.
- W1894641570 cites W1992939357 @default.
- W1894641570 cites W1998281138 @default.
- W1894641570 cites W1998651992 @default.
- W1894641570 cites W1999843495 @default.
- W1894641570 cites W2000613913 @default.
- W1894641570 cites W2005156666 @default.
- W1894641570 cites W2018039708 @default.
- W1894641570 cites W2023912087 @default.
- W1894641570 cites W2030165874 @default.
- W1894641570 cites W2040218731 @default.
- W1894641570 cites W2041083516 @default.
- W1894641570 cites W2057425761 @default.
- W1894641570 cites W2057582245 @default.
- W1894641570 cites W2057641906 @default.
- W1894641570 cites W2058499576 @default.
- W1894641570 cites W2061675270 @default.
- W1894641570 cites W2062321700 @default.
- W1894641570 cites W2063907334 @default.
- W1894641570 cites W2065800647 @default.
- W1894641570 cites W2067234885 @default.
- W1894641570 cites W2072093516 @default.
- W1894641570 cites W2076577718 @default.
- W1894641570 cites W2077304117 @default.
- W1894641570 cites W2078619499 @default.
- W1894641570 cites W2080082271 @default.
- W1894641570 cites W2082404809 @default.
- W1894641570 cites W2082874195 @default.
- W1894641570 cites W2086054835 @default.
- W1894641570 cites W2086823339 @default.
- W1894641570 cites W2099507093 @default.
- W1894641570 cites W2112341432 @default.
- W1894641570 cites W2132424470 @default.
- W1894641570 cites W2139709933 @default.
- W1894641570 cites W2150441763 @default.
- W1894641570 cites W2155632266 @default.
- W1894641570 cites W2160566385 @default.
- W1894641570 cites W2169439425 @default.
- W1894641570 cites W2315702301 @default.
- W1894641570 cites W2911964244 @default.
- W1894641570 doi "https://doi.org/10.1016/j.rse.2015.10.029" @default.
- W1894641570 hasPublicationYear "2015" @default.
- W1894641570 type Work @default.
- W1894641570 sameAs 1894641570 @default.
- W1894641570 citedByCount "79" @default.
- W1894641570 countsByYear W18946415702016 @default.
- W1894641570 countsByYear W18946415702017 @default.
- W1894641570 countsByYear W18946415702018 @default.
- W1894641570 countsByYear W18946415702019 @default.
- W1894641570 countsByYear W18946415702020 @default.
- W1894641570 countsByYear W18946415702021 @default.
- W1894641570 countsByYear W18946415702022 @default.
- W1894641570 countsByYear W18946415702023 @default.
- W1894641570 crossrefType "journal-article" @default.
- W1894641570 hasAuthorship W1894641570A5009227241 @default.
- W1894641570 hasAuthorship W1894641570A5019118021 @default.
- W1894641570 hasConcept C113174947 @default.
- W1894641570 hasConcept C119857082 @default.
- W1894641570 hasConcept C127313418 @default.
- W1894641570 hasConcept C134306372 @default.
- W1894641570 hasConcept C137580998 @default.
- W1894641570 hasConcept C143724316 @default.
- W1894641570 hasConcept C151406439 @default.
- W1894641570 hasConcept C151730666 @default.
- W1894641570 hasConcept C205649164 @default.
- W1894641570 hasConcept C33923547 @default.
- W1894641570 hasConcept C39432304 @default.
- W1894641570 hasConcept C41008148 @default.
- W1894641570 hasConcept C62649853 @default.
- W1894641570 hasConcept C97137747 @default.
- W1894641570 hasConceptScore W1894641570C113174947 @default.
- W1894641570 hasConceptScore W1894641570C119857082 @default.
- W1894641570 hasConceptScore W1894641570C127313418 @default.
- W1894641570 hasConceptScore W1894641570C134306372 @default.
- W1894641570 hasConceptScore W1894641570C137580998 @default.
- W1894641570 hasConceptScore W1894641570C143724316 @default.
- W1894641570 hasConceptScore W1894641570C151406439 @default.
- W1894641570 hasConceptScore W1894641570C151730666 @default.
- W1894641570 hasConceptScore W1894641570C205649164 @default.
- W1894641570 hasConceptScore W1894641570C33923547 @default.
- W1894641570 hasConceptScore W1894641570C39432304 @default.
- W1894641570 hasConceptScore W1894641570C41008148 @default.
- W1894641570 hasConceptScore W1894641570C62649853 @default.
- W1894641570 hasConceptScore W1894641570C97137747 @default.