Matches in SemOpenAlex for { <https://semopenalex.org/work/W1894723027> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1894723027 endingPage "992" @default.
- W1894723027 startingPage "949" @default.
- W1894723027 abstract "We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples $(lambda, mu, pi)$ such that the Kronecker coefficient $k^lambda_{mu, pi} = 0$ but the Kronecker coefficient $k^{l lambda}_{l mu, l pi} > 0$ for some integer $l>1$. Such holes are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any $0<epsilonleq1$, there exists $0<a<1$ such that, for all $m$, there exist $Omega(2^{m^a})$ partition triples $(lambda,mu,mu)$ in the Kronecker cone such that: (a) the Kronecker coefficient $k^lambda_{mu,mu}$ is zero, (b) the height of $mu$ is $m$, (c) the height of $lambda$ is $le m^epsilon$, and (d) $|lambda|=|mu| le m^3$. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT." @default.
- W1894723027 created "2016-06-24" @default.
- W1894723027 creator A5000361549 @default.
- W1894723027 creator A5016087422 @default.
- W1894723027 creator A5028134406 @default.
- W1894723027 date "2017-07-27" @default.
- W1894723027 modified "2023-09-26" @default.
- W1894723027 title "On vanishing of Kronecker coefficients" @default.
- W1894723027 cites W100925191 @default.
- W1894723027 cites W1982864005 @default.
- W1894723027 cites W1995509652 @default.
- W1894723027 cites W2001560897 @default.
- W1894723027 cites W2007051555 @default.
- W1894723027 cites W2023336906 @default.
- W1894723027 cites W2027466944 @default.
- W1894723027 cites W2029440585 @default.
- W1894723027 cites W2052054827 @default.
- W1894723027 cites W2060880193 @default.
- W1894723027 cites W2090186532 @default.
- W1894723027 cites W2148706005 @default.
- W1894723027 cites W2254435734 @default.
- W1894723027 cites W2322515038 @default.
- W1894723027 cites W2401610261 @default.
- W1894723027 cites W2513193117 @default.
- W1894723027 cites W2964230233 @default.
- W1894723027 cites W3099004107 @default.
- W1894723027 cites W3106475948 @default.
- W1894723027 cites W3125538124 @default.
- W1894723027 doi "https://doi.org/10.1007/s00037-017-0158-y" @default.
- W1894723027 hasPublicationYear "2017" @default.
- W1894723027 type Work @default.
- W1894723027 sameAs 1894723027 @default.
- W1894723027 citedByCount "26" @default.
- W1894723027 countsByYear W18947230272015 @default.
- W1894723027 countsByYear W18947230272016 @default.
- W1894723027 countsByYear W18947230272017 @default.
- W1894723027 countsByYear W18947230272018 @default.
- W1894723027 countsByYear W18947230272019 @default.
- W1894723027 countsByYear W18947230272020 @default.
- W1894723027 countsByYear W18947230272021 @default.
- W1894723027 countsByYear W18947230272022 @default.
- W1894723027 countsByYear W18947230272023 @default.
- W1894723027 crossrefType "journal-article" @default.
- W1894723027 hasAuthorship W1894723027A5000361549 @default.
- W1894723027 hasAuthorship W1894723027A5016087422 @default.
- W1894723027 hasAuthorship W1894723027A5028134406 @default.
- W1894723027 hasBestOaLocation W18947230272 @default.
- W1894723027 hasConcept C114614502 @default.
- W1894723027 hasConcept C118615104 @default.
- W1894723027 hasConcept C121332964 @default.
- W1894723027 hasConcept C138885662 @default.
- W1894723027 hasConcept C2778113609 @default.
- W1894723027 hasConcept C2780813799 @default.
- W1894723027 hasConcept C33923547 @default.
- W1894723027 hasConcept C39482219 @default.
- W1894723027 hasConcept C41895202 @default.
- W1894723027 hasConcept C42812 @default.
- W1894723027 hasConcept C62520636 @default.
- W1894723027 hasConceptScore W1894723027C114614502 @default.
- W1894723027 hasConceptScore W1894723027C118615104 @default.
- W1894723027 hasConceptScore W1894723027C121332964 @default.
- W1894723027 hasConceptScore W1894723027C138885662 @default.
- W1894723027 hasConceptScore W1894723027C2778113609 @default.
- W1894723027 hasConceptScore W1894723027C2780813799 @default.
- W1894723027 hasConceptScore W1894723027C33923547 @default.
- W1894723027 hasConceptScore W1894723027C39482219 @default.
- W1894723027 hasConceptScore W1894723027C41895202 @default.
- W1894723027 hasConceptScore W1894723027C42812 @default.
- W1894723027 hasConceptScore W1894723027C62520636 @default.
- W1894723027 hasIssue "4" @default.
- W1894723027 hasLocation W18947230271 @default.
- W1894723027 hasLocation W18947230272 @default.
- W1894723027 hasLocation W18947230273 @default.
- W1894723027 hasLocation W18947230274 @default.
- W1894723027 hasOpenAccess W1894723027 @default.
- W1894723027 hasPrimaryLocation W18947230271 @default.
- W1894723027 hasRelatedWork W1582582536 @default.
- W1894723027 hasRelatedWork W1978042415 @default.
- W1894723027 hasRelatedWork W2059144748 @default.
- W1894723027 hasRelatedWork W2080519218 @default.
- W1894723027 hasRelatedWork W2728224919 @default.
- W1894723027 hasRelatedWork W2902563245 @default.
- W1894723027 hasRelatedWork W2951521427 @default.
- W1894723027 hasRelatedWork W2963114048 @default.
- W1894723027 hasRelatedWork W4284892884 @default.
- W1894723027 hasRelatedWork W4307207262 @default.
- W1894723027 hasVolume "26" @default.
- W1894723027 isParatext "false" @default.
- W1894723027 isRetracted "false" @default.
- W1894723027 magId "1894723027" @default.
- W1894723027 workType "article" @default.