Matches in SemOpenAlex for { <https://semopenalex.org/work/W1895666203> ?p ?o ?g. }
- W1895666203 endingPage "1" @default.
- W1895666203 startingPage "1" @default.
- W1895666203 abstract "<h3>Importance</h3> Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training. <h3>Objective</h3> To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training. <h3>Design, Setting, and Participants</h3> A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015. <h3>Interventions</h3> Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions. <h3>Main Outcomes and Measures</h3> Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists. <h3>Results</h3> Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs 13.0 (11.9-14.1) with massed practice (<i>P</i> = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs 13.4 (12.8-14.0) for corresponding nontutored sessions (<i>P</i> < .01) but at the cost of a drop in performance once tutoring ceased. The performance drop was less with distributed practice, suggesting a protective effect when acquired skills were consolidated over time. The mean performance of the nontutored participants in the distributed practice group plateaued on a score of 16.0 (15.3-16.7) at approximately the ninth repetition, but the individual learning curves were highly variable. <h3>Conclusions and Relevance</h3> Novices can acquire basic mastoidectomy competencies with self-directed VR simulation training. Training should be organized with distributed practice, and simulator-integrated tutoring can be useful to accelerate the initial learning curve. Practice should be deliberate and toward a standard set level of proficiency that remains to be defined rather than toward the mean learning curve plateau." @default.
- W1895666203 created "2016-06-24" @default.
- W1895666203 creator A5006199968 @default.
- W1895666203 creator A5019545058 @default.
- W1895666203 creator A5078644982 @default.
- W1895666203 creator A5079087496 @default.
- W1895666203 date "2015-09-03" @default.
- W1895666203 modified "2023-10-16" @default.
- W1895666203 title "Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice" @default.
- W1895666203 cites W1507618913 @default.
- W1895666203 cites W1566187042 @default.
- W1895666203 cites W1602376808 @default.
- W1895666203 cites W1925947648 @default.
- W1895666203 cites W1965224342 @default.
- W1895666203 cites W1968803293 @default.
- W1895666203 cites W1977807688 @default.
- W1895666203 cites W1995399252 @default.
- W1895666203 cites W2002800579 @default.
- W1895666203 cites W2002873194 @default.
- W1895666203 cites W2003065744 @default.
- W1895666203 cites W2007350411 @default.
- W1895666203 cites W2023197795 @default.
- W1895666203 cites W2024849736 @default.
- W1895666203 cites W2030868422 @default.
- W1895666203 cites W2031469326 @default.
- W1895666203 cites W2034087332 @default.
- W1895666203 cites W2054079356 @default.
- W1895666203 cites W2060619573 @default.
- W1895666203 cites W2073430046 @default.
- W1895666203 cites W2091313453 @default.
- W1895666203 cites W2115173015 @default.
- W1895666203 cites W2123439336 @default.
- W1895666203 cites W2132739296 @default.
- W1895666203 cites W2136906253 @default.
- W1895666203 cites W2137837935 @default.
- W1895666203 cites W2148833920 @default.
- W1895666203 cites W2156608934 @default.
- W1895666203 cites W2161073845 @default.
- W1895666203 cites W2162122419 @default.
- W1895666203 cites W2165302617 @default.
- W1895666203 cites W2335401974 @default.
- W1895666203 doi "https://doi.org/10.1001/jamaoto.2015.1563" @default.
- W1895666203 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26334610" @default.
- W1895666203 hasPublicationYear "2015" @default.
- W1895666203 type Work @default.
- W1895666203 sameAs 1895666203 @default.
- W1895666203 citedByCount "43" @default.
- W1895666203 countsByYear W18956662032016 @default.
- W1895666203 countsByYear W18956662032017 @default.
- W1895666203 countsByYear W18956662032018 @default.
- W1895666203 countsByYear W18956662032019 @default.
- W1895666203 countsByYear W18956662032020 @default.
- W1895666203 countsByYear W18956662032021 @default.
- W1895666203 countsByYear W18956662032022 @default.
- W1895666203 countsByYear W18956662032023 @default.
- W1895666203 crossrefType "journal-article" @default.
- W1895666203 hasAuthorship W1895666203A5006199968 @default.
- W1895666203 hasAuthorship W1895666203A5019545058 @default.
- W1895666203 hasAuthorship W1895666203A5078644982 @default.
- W1895666203 hasAuthorship W1895666203A5079087496 @default.
- W1895666203 hasBestOaLocation W18956662031 @default.
- W1895666203 hasConcept C107457646 @default.
- W1895666203 hasConcept C111919701 @default.
- W1895666203 hasConcept C121332964 @default.
- W1895666203 hasConcept C132758656 @default.
- W1895666203 hasConcept C15744967 @default.
- W1895666203 hasConcept C159110408 @default.
- W1895666203 hasConcept C162324750 @default.
- W1895666203 hasConcept C1862650 @default.
- W1895666203 hasConcept C194969405 @default.
- W1895666203 hasConcept C19527891 @default.
- W1895666203 hasConcept C27415008 @default.
- W1895666203 hasConcept C2778755073 @default.
- W1895666203 hasConcept C34585555 @default.
- W1895666203 hasConcept C41008148 @default.
- W1895666203 hasConcept C50522688 @default.
- W1895666203 hasConcept C509550671 @default.
- W1895666203 hasConcept C62520636 @default.
- W1895666203 hasConcept C71924100 @default.
- W1895666203 hasConceptScore W1895666203C107457646 @default.
- W1895666203 hasConceptScore W1895666203C111919701 @default.
- W1895666203 hasConceptScore W1895666203C121332964 @default.
- W1895666203 hasConceptScore W1895666203C132758656 @default.
- W1895666203 hasConceptScore W1895666203C15744967 @default.
- W1895666203 hasConceptScore W1895666203C159110408 @default.
- W1895666203 hasConceptScore W1895666203C162324750 @default.
- W1895666203 hasConceptScore W1895666203C1862650 @default.
- W1895666203 hasConceptScore W1895666203C194969405 @default.
- W1895666203 hasConceptScore W1895666203C19527891 @default.
- W1895666203 hasConceptScore W1895666203C27415008 @default.
- W1895666203 hasConceptScore W1895666203C2778755073 @default.
- W1895666203 hasConceptScore W1895666203C34585555 @default.
- W1895666203 hasConceptScore W1895666203C41008148 @default.
- W1895666203 hasConceptScore W1895666203C50522688 @default.
- W1895666203 hasConceptScore W1895666203C509550671 @default.
- W1895666203 hasConceptScore W1895666203C62520636 @default.
- W1895666203 hasConceptScore W1895666203C71924100 @default.
- W1895666203 hasLocation W18956662031 @default.