Matches in SemOpenAlex for { <https://semopenalex.org/work/W1895804544> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1895804544 endingPage "16" @default.
- W1895804544 startingPage "9" @default.
- W1895804544 abstract "Blood pressure (BP) and the electrocardiographic (ECG) signal, or electrical signal of the heart, are physical measurements that provide insight into the behavior of the cardiac system. This paper presents a novel methodology, where for the first time the relationship between BP and ECG signal is shown. Initially, to perform this study, a signal sampling of ECG signals was performed on 20 patients: eighteen healthy, between 17 and 26 years old, and two with normal BP between 50 and 78 years old. Powerlab equipment was used to record the ECG signal, with electrodes used to capture the heart signal through the lead. Once the signal samples were obtained, the R and T waves in particular were studied with the aim of reading the systolic and diastolic blood pressure separately. In order to obtain the BP with the ECG signals, we used a wavelet transform to identify the R waves and T waves, and then to perform segmentation on the signal and extract the systole and diastole portions from the original signal. Following this procedure, neural networks were applied in order to have a system with systolic and diastolic pressure values based on the ECG signals. This application led to a total success rate of 97.305% for systole and 95.65% for diastole. In conclusion, this article can be said to demonstrate the existence of a relationship between BP and ECG signals.Blood pressure (BP) and the electrocardiographic (ECG) signal, or electrical signal of the heart, are physical measurements that provide insight into the behavior of the cardiac system. This paper presents a novel methodology, where for the first time the relationship between BP and ECG signal is shown. Initially, to perform this study, a signal sampling of ECG signals was performed on 20 patients: eighteen healthy, between 17 and 26 years old, and two with normal BP between 50 and 78 years old. Powerlab equipment was used to record the ECG signal, with electrodes used to capture the heart signal through the lead. Once the signal samples were obtained, the R and T waves in particular were studied with the aim of reading the systolic and diastolic blood pressure separately. In order to obtain the BP with the ECG signals, we used a wavelet transform to identify the R waves and T waves, and then to perform segmentation on the signal and extract the systole and diastole portions from the original signal. Following this procedure, neural networks were applied in order to have a system with systolic and diastolic pressure values based on the ECG signals. This application led to a total success rate of 97.305% for systole and 95.65% for diastole. In conclusion, this article can be said to demonstrate the existence of a relationship between BP and ECG signals." @default.
- W1895804544 created "2016-06-24" @default.
- W1895804544 creator A5008482777 @default.
- W1895804544 creator A5035272266 @default.
- W1895804544 creator A5078452798 @default.
- W1895804544 date "2014-01-01" @default.
- W1895804544 modified "2023-09-26" @default.
- W1895804544 title "Relationship of blood pressure with the electrical signal of the heart using signal processing" @default.
- W1895804544 cites W1988023710 @default.
- W1895804544 cites W2000854809 @default.
- W1895804544 cites W2008468927 @default.
- W1895804544 cites W2010963462 @default.
- W1895804544 cites W2049918576 @default.
- W1895804544 cites W2053359053 @default.
- W1895804544 cites W2063923412 @default.
- W1895804544 cites W2074445898 @default.
- W1895804544 cites W2113546356 @default.
- W1895804544 cites W2170458451 @default.
- W1895804544 doi "https://doi.org/10.18180/tecciencia.2014.17.1" @default.
- W1895804544 hasPublicationYear "2014" @default.
- W1895804544 type Work @default.
- W1895804544 sameAs 1895804544 @default.
- W1895804544 citedByCount "14" @default.
- W1895804544 countsByYear W18958045442017 @default.
- W1895804544 countsByYear W18958045442018 @default.
- W1895804544 countsByYear W18958045442019 @default.
- W1895804544 countsByYear W18958045442020 @default.
- W1895804544 countsByYear W18958045442021 @default.
- W1895804544 countsByYear W18958045442022 @default.
- W1895804544 crossrefType "journal-article" @default.
- W1895804544 hasAuthorship W1895804544A5008482777 @default.
- W1895804544 hasAuthorship W1895804544A5035272266 @default.
- W1895804544 hasAuthorship W1895804544A5078452798 @default.
- W1895804544 hasBestOaLocation W18958045441 @default.
- W1895804544 hasConcept C121332964 @default.
- W1895804544 hasConcept C126322002 @default.
- W1895804544 hasConcept C136229726 @default.
- W1895804544 hasConcept C154945302 @default.
- W1895804544 hasConcept C164705383 @default.
- W1895804544 hasConcept C169554166 @default.
- W1895804544 hasConcept C196216189 @default.
- W1895804544 hasConcept C199360897 @default.
- W1895804544 hasConcept C24890656 @default.
- W1895804544 hasConcept C2779843651 @default.
- W1895804544 hasConcept C2780040984 @default.
- W1895804544 hasConcept C41008148 @default.
- W1895804544 hasConcept C47432892 @default.
- W1895804544 hasConcept C57900726 @default.
- W1895804544 hasConcept C71924100 @default.
- W1895804544 hasConcept C84393581 @default.
- W1895804544 hasConceptScore W1895804544C121332964 @default.
- W1895804544 hasConceptScore W1895804544C126322002 @default.
- W1895804544 hasConceptScore W1895804544C136229726 @default.
- W1895804544 hasConceptScore W1895804544C154945302 @default.
- W1895804544 hasConceptScore W1895804544C164705383 @default.
- W1895804544 hasConceptScore W1895804544C169554166 @default.
- W1895804544 hasConceptScore W1895804544C196216189 @default.
- W1895804544 hasConceptScore W1895804544C199360897 @default.
- W1895804544 hasConceptScore W1895804544C24890656 @default.
- W1895804544 hasConceptScore W1895804544C2779843651 @default.
- W1895804544 hasConceptScore W1895804544C2780040984 @default.
- W1895804544 hasConceptScore W1895804544C41008148 @default.
- W1895804544 hasConceptScore W1895804544C47432892 @default.
- W1895804544 hasConceptScore W1895804544C57900726 @default.
- W1895804544 hasConceptScore W1895804544C71924100 @default.
- W1895804544 hasConceptScore W1895804544C84393581 @default.
- W1895804544 hasIssue "17" @default.
- W1895804544 hasLocation W18958045441 @default.
- W1895804544 hasLocation W18958045442 @default.
- W1895804544 hasOpenAccess W1895804544 @default.
- W1895804544 hasPrimaryLocation W18958045441 @default.
- W1895804544 hasRelatedWork W1681109436 @default.
- W1895804544 hasRelatedWork W2039035491 @default.
- W1895804544 hasRelatedWork W2068968834 @default.
- W1895804544 hasRelatedWork W2077848857 @default.
- W1895804544 hasRelatedWork W2090448397 @default.
- W1895804544 hasRelatedWork W2104639753 @default.
- W1895804544 hasRelatedWork W2416787583 @default.
- W1895804544 hasRelatedWork W2783502409 @default.
- W1895804544 hasRelatedWork W2965268622 @default.
- W1895804544 hasRelatedWork W3108307136 @default.
- W1895804544 hasVolume "9" @default.
- W1895804544 isParatext "false" @default.
- W1895804544 isRetracted "false" @default.
- W1895804544 magId "1895804544" @default.
- W1895804544 workType "article" @default.