Matches in SemOpenAlex for { <https://semopenalex.org/work/W1896380908> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1896380908 endingPage "5" @default.
- W1896380908 startingPage "3" @default.
- W1896380908 abstract "Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host.” In essence, this definition was first coined in 2001 by an international expert panel convened by the Food and Agriculture Organization of the United Nations (FAO) and the WHO.1 Validity and acceptance of the definition over the years is evidenced by the fact that only a minor grammatical correction was recommended in a recent expert panel meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP).2 Clear definitions of probiotics are crucial for scientific research on probiotics, for producers and consumers of probiotic products, and for regulators who want to ensure product safety and protect the consumer from false or exaggerated health claims. Rigorous scientific research is necessary to prove or disprove that particular strains or groups of microorganisms confer health benefits to the host. The most recent recommendations on probiotics state that certain genera and species exert beneficial effects that can be considered probiotic.2 For example, genera-level effects include competitive exclusion of pathogens, butyrate and other short chain fatty acid (SCFA) production, or regulation of intestinal transit. Probiotic species might produce vitamins or beneficial enzymes, metabolize bile salt, exhibit antagonisms toward specific pathogens, neutralize toxic chemicals or carcinogens, and support barrier function of the intestinal epithelium. Far reaching immunological, endocrinological, and neurological effects, however, are usually associated with specific strains of probiotics that are equipped with genetic traits that are not present in other members of the species. It remains to be determined whether the core benefits of probiotic genera/species are harbored in a “probiotic core genome” while strain-level probiotic mechanisms are encoded in highly specialized gene sets. At present, undefined microbial consortia (e.g. fecal microbiota transplants3,4) that exert beneficial effects on the host are not considered probiotics according to the latest expert panel report2. However, increased scrutiny of human or animal microbiota most likely will lead to identification of novel probiotics that are not members of the traditional genera with beneficial properties such as Lactobacillus or Bifidobacterium. For example, Faecalibacterium prausnitzi5,6 and Akkermansia muciniphila7,8 are considered as candidate probiotic species because of their positive effects on intestinal health in humans, but safety and efficacy of these bacteria has to be demonstrated through rigorous scientific research and randomized controlled trials. Consequently, selection and testing of microorganisms for potential use as probiotics in humans or animals is no easy task. In 2001 and 2002, expert consultations led to formulation of the FAO/WHO Guidelines for the assessment of probiotics in food.1,9 These guidelines are still helpful today for selecting and evaluating probiotics as food, food supplement, or as probiotic drug for treatment and prevention of certain diseases.2,10,11 While evaluation of safety and efficacy with suitable methods is paramount, appropriate viability and shelf-life are, by definition, prerequisites for probiotics. Ultimately, efficacy and safety have to be confirmed in the intended target organism, i.e. for human probiotics through well-conducted clinical studies in humans. In vitro studies of probiotic candidates or studies in model organisms can only provide an initial motivation for health claims, but no proof. Nevertheless, such research is a valid starting point and could give insights into potential mechanisms of probiotic action. Tests for tolerance to gastric acidity, resistance to bile, adherence ability to mucus and/or intestinal cells, and antimicrobial activities were suggested as in vitro studies by probiotics expert panels.1,9 Many researchers have adopted these approaches to screen for potentially probiotic strains. In vivo studies using rodents, zebrafish (Danio rerio), or invertebrates such as Caenorhabditis elegans and Drosophila melanogaster as animal models are certainly better suited to deliver relevant information on probiotic mechanisms. For example, some of the most exciting research on the microbiota-gut-brain axis and potential manipulation of cognitive functions by probiotics has been conducted in mice.12,13 The zebrafish model revealed the enhancement of fecundity and bone development by probiotic administration.14,15 C. elegans has emerged as versatile model for the study of pathogens, commensals, and probiotics. 16-19 Interestingly, symbiotic lactobacilli appear to be involved in metazoan intestinal development and stem cell proliferation, as recently reported in the fruit fly by Jones et al.20" @default.
- W1896380908 created "2016-06-24" @default.
- W1896380908 creator A5008042456 @default.
- W1896380908 date "2015-01-02" @default.
- W1896380908 modified "2023-09-26" @default.
- W1896380908 title "Probiotics research in Galleria mellonella" @default.
- W1896380908 cites W13959721 @default.
- W1896380908 cites W141500025 @default.
- W1896380908 cites W1492905755 @default.
- W1896380908 cites W1496873577 @default.
- W1896380908 cites W1523505474 @default.
- W1896380908 cites W1825857774 @default.
- W1896380908 cites W1892259311 @default.
- W1896380908 cites W1993640276 @default.
- W1896380908 cites W2024107091 @default.
- W1896380908 cites W2029344996 @default.
- W1896380908 cites W2037184390 @default.
- W1896380908 cites W2038900305 @default.
- W1896380908 cites W2044370709 @default.
- W1896380908 cites W2050939128 @default.
- W1896380908 cites W2074036006 @default.
- W1896380908 cites W2074473660 @default.
- W1896380908 cites W2075691919 @default.
- W1896380908 cites W2078880993 @default.
- W1896380908 cites W2085412181 @default.
- W1896380908 cites W2102434025 @default.
- W1896380908 cites W2104423086 @default.
- W1896380908 cites W2129253942 @default.
- W1896380908 cites W2135717147 @default.
- W1896380908 cites W2137011699 @default.
- W1896380908 cites W2149074973 @default.
- W1896380908 cites W2152824815 @default.
- W1896380908 cites W2156960740 @default.
- W1896380908 cites W2164342861 @default.
- W1896380908 cites W2167637859 @default.
- W1896380908 cites W2171236269 @default.
- W1896380908 cites W2321884843 @default.
- W1896380908 cites W55499856 @default.
- W1896380908 doi "https://doi.org/10.1080/21505594.2014.998967" @default.
- W1896380908 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4603432" @default.
- W1896380908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25654691" @default.
- W1896380908 hasPublicationYear "2015" @default.
- W1896380908 type Work @default.
- W1896380908 sameAs 1896380908 @default.
- W1896380908 citedByCount "7" @default.
- W1896380908 countsByYear W18963809082016 @default.
- W1896380908 countsByYear W18963809082017 @default.
- W1896380908 countsByYear W18963809082019 @default.
- W1896380908 countsByYear W18963809082020 @default.
- W1896380908 countsByYear W18963809082021 @default.
- W1896380908 crossrefType "journal-article" @default.
- W1896380908 hasAuthorship W1896380908A5008042456 @default.
- W1896380908 hasBestOaLocation W18963809081 @default.
- W1896380908 hasConcept C104317684 @default.
- W1896380908 hasConcept C159047783 @default.
- W1896380908 hasConcept C2779032433 @default.
- W1896380908 hasConcept C54355233 @default.
- W1896380908 hasConcept C60987743 @default.
- W1896380908 hasConcept C86803240 @default.
- W1896380908 hasConcept C89423630 @default.
- W1896380908 hasConceptScore W1896380908C104317684 @default.
- W1896380908 hasConceptScore W1896380908C159047783 @default.
- W1896380908 hasConceptScore W1896380908C2779032433 @default.
- W1896380908 hasConceptScore W1896380908C54355233 @default.
- W1896380908 hasConceptScore W1896380908C60987743 @default.
- W1896380908 hasConceptScore W1896380908C86803240 @default.
- W1896380908 hasConceptScore W1896380908C89423630 @default.
- W1896380908 hasIssue "1" @default.
- W1896380908 hasLocation W18963809081 @default.
- W1896380908 hasLocation W18963809082 @default.
- W1896380908 hasLocation W18963809083 @default.
- W1896380908 hasLocation W18963809084 @default.
- W1896380908 hasOpenAccess W1896380908 @default.
- W1896380908 hasPrimaryLocation W18963809081 @default.
- W1896380908 hasRelatedWork W1988226162 @default.
- W1896380908 hasRelatedWork W2005174337 @default.
- W1896380908 hasRelatedWork W2088971547 @default.
- W1896380908 hasRelatedWork W2133817701 @default.
- W1896380908 hasRelatedWork W2138657838 @default.
- W1896380908 hasRelatedWork W2156960740 @default.
- W1896380908 hasRelatedWork W2888544621 @default.
- W1896380908 hasRelatedWork W2963843582 @default.
- W1896380908 hasRelatedWork W3107208709 @default.
- W1896380908 hasRelatedWork W4248379183 @default.
- W1896380908 hasVolume "6" @default.
- W1896380908 isParatext "false" @default.
- W1896380908 isRetracted "false" @default.
- W1896380908 magId "1896380908" @default.
- W1896380908 workType "article" @default.