Matches in SemOpenAlex for { <https://semopenalex.org/work/W1896742105> ?p ?o ?g. }
- W1896742105 endingPage "285" @default.
- W1896742105 startingPage "267" @default.
- W1896742105 abstract "Sample size ranks as one of the most important factors that affect the item calibration task. However, due to practical concerns (e.g., item exposure) items are typically calibrated with much smaller samples than what is desired. To address the need for a more flexible framework that can be used in small sample item calibration, this article proposes an approach that accounts for the dimensionality of the assessments in the calibration process. This approach is based on the higher-order item response theory (HO-IRT) model. The HO-IRT model is a multi-unidimensional model that uses in-test collateral information and represents it in the correlational structure of the domains through a higher-order latent trait formulation. Using Markov chain Monte Carlo in a hierarchical Bayesian framework, the item parameters, the overall and domain-specific abilities, and their correlations are estimated simultaneously. The feasibility and effectiveness of the proposed approach are investigated under varied conditions in a simulation study and illustrated using actual assessment data." @default.
- W1896742105 created "2016-06-24" @default.
- W1896742105 creator A5036982862 @default.
- W1896742105 creator A5061498444 @default.
- W1896742105 date "2010-05-17" @default.
- W1896742105 modified "2023-09-25" @default.
- W1896742105 title "Parameter Estimation With Small Sample Size A Higher-Order IRT Model Approach" @default.
- W1896742105 cites W1980890095 @default.
- W1896742105 cites W1986315315 @default.
- W1896742105 cites W1993244886 @default.
- W1896742105 cites W2011041604 @default.
- W1896742105 cites W2013460675 @default.
- W1896742105 cites W2016212663 @default.
- W1896742105 cites W2038174743 @default.
- W1896742105 cites W2039625536 @default.
- W1896742105 cites W2043956587 @default.
- W1896742105 cites W2069567754 @default.
- W1896742105 cites W2075847540 @default.
- W1896742105 cites W2079558145 @default.
- W1896742105 cites W2093759442 @default.
- W1896742105 cites W2104758103 @default.
- W1896742105 cites W2120582064 @default.
- W1896742105 cites W2121134670 @default.
- W1896742105 cites W2125193741 @default.
- W1896742105 cites W2136796925 @default.
- W1896742105 cites W2149235111 @default.
- W1896742105 cites W2158518800 @default.
- W1896742105 cites W2170853093 @default.
- W1896742105 cites W4232383088 @default.
- W1896742105 cites W4240166507 @default.
- W1896742105 cites W75622832 @default.
- W1896742105 doi "https://doi.org/10.1177/0146621608329501" @default.
- W1896742105 hasPublicationYear "2010" @default.
- W1896742105 type Work @default.
- W1896742105 sameAs 1896742105 @default.
- W1896742105 citedByCount "44" @default.
- W1896742105 countsByYear W18967421052012 @default.
- W1896742105 countsByYear W18967421052013 @default.
- W1896742105 countsByYear W18967421052014 @default.
- W1896742105 countsByYear W18967421052015 @default.
- W1896742105 countsByYear W18967421052016 @default.
- W1896742105 countsByYear W18967421052018 @default.
- W1896742105 countsByYear W18967421052019 @default.
- W1896742105 countsByYear W18967421052020 @default.
- W1896742105 countsByYear W18967421052021 @default.
- W1896742105 countsByYear W18967421052022 @default.
- W1896742105 crossrefType "journal-article" @default.
- W1896742105 hasAuthorship W1896742105A5036982862 @default.
- W1896742105 hasAuthorship W1896742105A5061498444 @default.
- W1896742105 hasConcept C105795698 @default.
- W1896742105 hasConcept C107673813 @default.
- W1896742105 hasConcept C111030470 @default.
- W1896742105 hasConcept C111350023 @default.
- W1896742105 hasConcept C129848803 @default.
- W1896742105 hasConcept C149782125 @default.
- W1896742105 hasConcept C165838908 @default.
- W1896742105 hasConcept C171606756 @default.
- W1896742105 hasConcept C185592680 @default.
- W1896742105 hasConcept C19499675 @default.
- W1896742105 hasConcept C198531522 @default.
- W1896742105 hasConcept C19875794 @default.
- W1896742105 hasConcept C207968926 @default.
- W1896742105 hasConcept C33923547 @default.
- W1896742105 hasConcept C41008148 @default.
- W1896742105 hasConcept C43617362 @default.
- W1896742105 hasConceptScore W1896742105C105795698 @default.
- W1896742105 hasConceptScore W1896742105C107673813 @default.
- W1896742105 hasConceptScore W1896742105C111030470 @default.
- W1896742105 hasConceptScore W1896742105C111350023 @default.
- W1896742105 hasConceptScore W1896742105C129848803 @default.
- W1896742105 hasConceptScore W1896742105C149782125 @default.
- W1896742105 hasConceptScore W1896742105C165838908 @default.
- W1896742105 hasConceptScore W1896742105C171606756 @default.
- W1896742105 hasConceptScore W1896742105C185592680 @default.
- W1896742105 hasConceptScore W1896742105C19499675 @default.
- W1896742105 hasConceptScore W1896742105C198531522 @default.
- W1896742105 hasConceptScore W1896742105C19875794 @default.
- W1896742105 hasConceptScore W1896742105C207968926 @default.
- W1896742105 hasConceptScore W1896742105C33923547 @default.
- W1896742105 hasConceptScore W1896742105C41008148 @default.
- W1896742105 hasConceptScore W1896742105C43617362 @default.
- W1896742105 hasIssue "4" @default.
- W1896742105 hasLocation W18967421051 @default.
- W1896742105 hasOpenAccess W1896742105 @default.
- W1896742105 hasPrimaryLocation W18967421051 @default.
- W1896742105 hasRelatedWork W1756739858 @default.
- W1896742105 hasRelatedWork W2030421604 @default.
- W1896742105 hasRelatedWork W2038392294 @default.
- W1896742105 hasRelatedWork W2051766203 @default.
- W1896742105 hasRelatedWork W2056080599 @default.
- W1896742105 hasRelatedWork W2057598446 @default.
- W1896742105 hasRelatedWork W2135649677 @default.
- W1896742105 hasRelatedWork W2158518800 @default.
- W1896742105 hasRelatedWork W2523702887 @default.
- W1896742105 hasRelatedWork W3200212599 @default.
- W1896742105 hasVolume "34" @default.
- W1896742105 isParatext "false" @default.
- W1896742105 isRetracted "false" @default.