Matches in SemOpenAlex for { <https://semopenalex.org/work/W1897075356> ?p ?o ?g. }
- W1897075356 endingPage "no" @default.
- W1897075356 startingPage "no" @default.
- W1897075356 abstract "We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos." @default.
- W1897075356 created "2016-06-24" @default.
- W1897075356 creator A5003646453 @default.
- W1897075356 creator A5020375409 @default.
- W1897075356 creator A5088130236 @default.
- W1897075356 date "2011-07-01" @default.
- W1897075356 modified "2023-09-24" @default.
- W1897075356 title "Modelling the shapes of the largest gravitationally bound objects" @default.
- W1897075356 cites W134288904 @default.
- W1897075356 cites W1526126248 @default.
- W1897075356 cites W1794691553 @default.
- W1897075356 cites W1875800344 @default.
- W1897075356 cites W1964055719 @default.
- W1897075356 cites W1964852828 @default.
- W1897075356 cites W1969294729 @default.
- W1897075356 cites W1973215726 @default.
- W1897075356 cites W1973787491 @default.
- W1897075356 cites W1974060472 @default.
- W1897075356 cites W1974542762 @default.
- W1897075356 cites W1974823277 @default.
- W1897075356 cites W1975326286 @default.
- W1897075356 cites W197783772 @default.
- W1897075356 cites W1978642495 @default.
- W1897075356 cites W1982028818 @default.
- W1897075356 cites W1982533357 @default.
- W1897075356 cites W1982770734 @default.
- W1897075356 cites W1993782765 @default.
- W1897075356 cites W1994527043 @default.
- W1897075356 cites W1997160350 @default.
- W1897075356 cites W1998577648 @default.
- W1897075356 cites W1999244535 @default.
- W1897075356 cites W1999367759 @default.
- W1897075356 cites W1999393835 @default.
- W1897075356 cites W2002142654 @default.
- W1897075356 cites W2003182532 @default.
- W1897075356 cites W2003864863 @default.
- W1897075356 cites W2008084436 @default.
- W1897075356 cites W2009378682 @default.
- W1897075356 cites W2010438020 @default.
- W1897075356 cites W2012467990 @default.
- W1897075356 cites W2013644708 @default.
- W1897075356 cites W2014261334 @default.
- W1897075356 cites W2015395440 @default.
- W1897075356 cites W2016527243 @default.
- W1897075356 cites W2016884061 @default.
- W1897075356 cites W2018010328 @default.
- W1897075356 cites W2018719255 @default.
- W1897075356 cites W2019899030 @default.
- W1897075356 cites W2025603133 @default.
- W1897075356 cites W2025786375 @default.
- W1897075356 cites W2028192500 @default.
- W1897075356 cites W2031884433 @default.
- W1897075356 cites W2032469582 @default.
- W1897075356 cites W2033802061 @default.
- W1897075356 cites W2038396948 @default.
- W1897075356 cites W2039393818 @default.
- W1897075356 cites W2044035811 @default.
- W1897075356 cites W2045999791 @default.
- W1897075356 cites W2046632067 @default.
- W1897075356 cites W2047843291 @default.
- W1897075356 cites W2049737266 @default.
- W1897075356 cites W2051694884 @default.
- W1897075356 cites W2053860859 @default.
- W1897075356 cites W2054978504 @default.
- W1897075356 cites W2055443781 @default.
- W1897075356 cites W2056306757 @default.
- W1897075356 cites W2059079076 @default.
- W1897075356 cites W2063250375 @default.
- W1897075356 cites W2066284906 @default.
- W1897075356 cites W2066533470 @default.
- W1897075356 cites W2069108113 @default.
- W1897075356 cites W2069934236 @default.
- W1897075356 cites W2073000734 @default.
- W1897075356 cites W2076384560 @default.
- W1897075356 cites W2077351580 @default.
- W1897075356 cites W2080820021 @default.
- W1897075356 cites W2083352943 @default.
- W1897075356 cites W2087432755 @default.
- W1897075356 cites W2092545093 @default.
- W1897075356 cites W2092695191 @default.
- W1897075356 cites W2095661530 @default.
- W1897075356 cites W2098683668 @default.
- W1897075356 cites W2100855177 @default.
- W1897075356 cites W2103100915 @default.
- W1897075356 cites W2108172733 @default.
- W1897075356 cites W2108282089 @default.
- W1897075356 cites W2108902294 @default.
- W1897075356 cites W2110563485 @default.
- W1897075356 cites W2110705353 @default.
- W1897075356 cites W2112791214 @default.
- W1897075356 cites W2114004946 @default.
- W1897075356 cites W2115278372 @default.
- W1897075356 cites W2116124126 @default.
- W1897075356 cites W2120947878 @default.
- W1897075356 cites W2124511232 @default.
- W1897075356 cites W2128037288 @default.
- W1897075356 cites W2132932168 @default.
- W1897075356 cites W2138210788 @default.