Matches in SemOpenAlex for { <https://semopenalex.org/work/W189743172> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W189743172 endingPage "131" @default.
- W189743172 startingPage "107" @default.
- W189743172 abstract "The conjectures of Deligne [17], Beilinson [3] and Bloch–Kato [4] are a vast generalisation of the Dirichlet–Dedekind class number formula and Birch–Swinnerton-Dyer conjecture. They predict the order of arithmetic objects (such as class groups, Tate–Shafarevich groups, etc.) in terms of special values of L-functions. On the other hand, the aim of Iwasawa theory is to understand the Galois module structure of these arithmetic objects in terms of L-values. We roughly explain what may now be called classical Iwasawa theory. Let p be a prime. Let ℚcyc be the cyclotomic ℤp-extension of ℚ (see section 2). Let M be a motive over ℚ. We assume that M is critical in the sense of Deligne (this means that the Euler factor at infinity L∞(M, s) and L∞(M*(1), -s) are both holomorphic at s = 0, where M* is the dual motive. For details see [14]). Assume that p is a good ordinary prime for M (in the sense of Greenberg [25]. This just means that the p-adic realisation of M has a finite decreasing filtration such that the action of inertia on the ith graded piece is via the ith power of the p-adic cyclotomic character). Let Γ = Gal(ℚcyc/ℚ) ≅ ℤp and let ∧(Γ) be the Iwasawa algebra ℤp[[Γ]] (see end of Section 2). Fix a topological generator γ of Γ. Then the Iwasawa algebra and;(Γ) is isomorphic to the power series ring ℤp[[T]]." @default.
- W189743172 created "2016-06-24" @default.
- W189743172 creator A5035121687 @default.
- W189743172 date "2011-12-15" @default.
- W189743172 modified "2023-09-27" @default.
- W189743172 title "From the classical to the noncommutative Iwasawa theory (for totally real number fields)" @default.
- W189743172 cites W1489414790 @default.
- W189743172 cites W1518207627 @default.
- W189743172 cites W1558675208 @default.
- W189743172 cites W1565991082 @default.
- W189743172 cites W1582341547 @default.
- W189743172 cites W1583269976 @default.
- W189743172 cites W1669959377 @default.
- W189743172 cites W169258215 @default.
- W189743172 cites W185395946 @default.
- W189743172 cites W1967565690 @default.
- W189743172 cites W1983374603 @default.
- W189743172 cites W1995147169 @default.
- W189743172 cites W2001459197 @default.
- W189743172 cites W2007333163 @default.
- W189743172 cites W2008965372 @default.
- W189743172 cites W2016460631 @default.
- W189743172 cites W2025094331 @default.
- W189743172 cites W2025382067 @default.
- W189743172 cites W2034229247 @default.
- W189743172 cites W2040971425 @default.
- W189743172 cites W2053414470 @default.
- W189743172 cites W2073454809 @default.
- W189743172 cites W2103604124 @default.
- W189743172 cites W2117244912 @default.
- W189743172 cites W2124962965 @default.
- W189743172 cites W2145463554 @default.
- W189743172 cites W2152069602 @default.
- W189743172 cites W2317395509 @default.
- W189743172 cites W2991035226 @default.
- W189743172 cites W3098533729 @default.
- W189743172 cites W4206257166 @default.
- W189743172 doi "https://doi.org/10.1017/cbo9780511984440.005" @default.
- W189743172 hasPublicationYear "2011" @default.
- W189743172 type Work @default.
- W189743172 sameAs 189743172 @default.
- W189743172 citedByCount "0" @default.
- W189743172 crossrefType "book-chapter" @default.
- W189743172 hasAuthorship W189743172A5035121687 @default.
- W189743172 hasConcept C112698675 @default.
- W189743172 hasConcept C136119220 @default.
- W189743172 hasConcept C144133560 @default.
- W189743172 hasConcept C145899342 @default.
- W189743172 hasConcept C194909684 @default.
- W189743172 hasConcept C202444582 @default.
- W189743172 hasConcept C204575570 @default.
- W189743172 hasConcept C2780129039 @default.
- W189743172 hasConcept C2780990831 @default.
- W189743172 hasConcept C33923547 @default.
- W189743172 hasConcept C67536143 @default.
- W189743172 hasConcept C68797384 @default.
- W189743172 hasConcept C94375191 @default.
- W189743172 hasConceptScore W189743172C112698675 @default.
- W189743172 hasConceptScore W189743172C136119220 @default.
- W189743172 hasConceptScore W189743172C144133560 @default.
- W189743172 hasConceptScore W189743172C145899342 @default.
- W189743172 hasConceptScore W189743172C194909684 @default.
- W189743172 hasConceptScore W189743172C202444582 @default.
- W189743172 hasConceptScore W189743172C204575570 @default.
- W189743172 hasConceptScore W189743172C2780129039 @default.
- W189743172 hasConceptScore W189743172C2780990831 @default.
- W189743172 hasConceptScore W189743172C33923547 @default.
- W189743172 hasConceptScore W189743172C67536143 @default.
- W189743172 hasConceptScore W189743172C68797384 @default.
- W189743172 hasConceptScore W189743172C94375191 @default.
- W189743172 hasLocation W1897431721 @default.
- W189743172 hasOpenAccess W189743172 @default.
- W189743172 hasPrimaryLocation W1897431721 @default.
- W189743172 hasRelatedWork W1573225436 @default.
- W189743172 hasRelatedWork W1971410995 @default.
- W189743172 hasRelatedWork W1996333803 @default.
- W189743172 hasRelatedWork W2049186872 @default.
- W189743172 hasRelatedWork W2093102607 @default.
- W189743172 hasRelatedWork W2176074300 @default.
- W189743172 hasRelatedWork W2317623867 @default.
- W189743172 hasRelatedWork W2950678005 @default.
- W189743172 hasRelatedWork W2952948154 @default.
- W189743172 hasRelatedWork W4299965134 @default.
- W189743172 isParatext "false" @default.
- W189743172 isRetracted "false" @default.
- W189743172 magId "189743172" @default.
- W189743172 workType "book-chapter" @default.