Matches in SemOpenAlex for { <https://semopenalex.org/work/W1898488645> ?p ?o ?g. }
- W1898488645 abstract "Unconditional Lower Bounds in Complexity Theory Igor Carboni Oliveira This work investigates the hardness of solving natural computational problems according to different complexity measures. Our results and techniques span several areas in theoretical computer science and discrete mathematics. They have in common the following aspects: (i) the results are unconditional, i.e., they rely on no unproven hardness assumption from complexity theory; (ii) the corresponding lower bounds are essentially optimal. Among our contributions, we highlight the following results. • Constraint Satisfaction Problems and Monotone Complexity. We introduce a natural formulation of the satisfiability problem as a monotone function, and prove a nearoptimal 2Ω(n/ logn) lower bound on the size of monotone formulas solving k-SAT on nvariable instances (for a large enough k ∈ N). More generally, we investigate constraint satisfaction problems according to the geometry of their constraints, i.e., as a function of the hypergraph describing which variables appear in each constraint. Our results show in a certain technical sense that the monotone circuit depth complexity of the satisfiability problem is polynomially related to the tree-width of the corresponding graphs. • Interactive Protocols and Communication Complexity. We investigate interactive compression protocols, a hybrid model between computational complexity and communication complexity. We prove that the communication complexity of the Majority function on n-bit inputs with respect to Boolean circuits of size s and depth d extended with modulo p gates is precisely n/ log s, where p is a fixed prime number, and d ∈ N. Further, we establish a strong round-separation theorem for bounded-depth circuits, showing that (r+ 1)-round protocols can be substantially more efficient than r-round protocols, for every r ∈ N. • Negations in Computational Learning Theory. We study the learnability of circuits containing a given number of negation gates, a measure that interpolates between monotone functions, and the class of all functions. Let Ct n be the class of Boolean functions on n input variables that can be computed by Boolean circuits with at most t negations. We prove that any algorithm that learns every f ∈ Ct n with membership queries according to the uniform distribution to accuracy e has query complexity 2Ω(2 tn/e) (for a large range of these parameters). Moreover, we give an algorithm that learns Ct n from random examples only, and with a running time that essentially matches this information-theoretic lower bound. • Negations in Theory of Cryptography. We investigate the power of negation gates in cryptography and related areas, and prove that many basic cryptographic primitives require essentially the maximum number of negations among all Boolean functions. In other words, cryptography is highly non-monotone. Our results rely on a variety of techniques, and give near-optimal lower bounds for pseudorandom functions, error-correcting codes, hardcore predicates, randomness extractors, and small-bias generators. • Algorithms versus Circuit Lower Bounds. We strengthen a few connections between algorithms and circuit lower bounds. We show that the design of faster algorithms in some widely investigated learning models would imply new unconditional lower bounds in complexity theory. In addition, we prove that the existence of non-trivial satisfiability algorithms for certain classes of Boolean circuits of depth d+ 2 leads to lower bounds for the corresponding class of circuits of depth d. These results show that either there are no faster algorithms for some computational tasks, or certain circuit lower bounds hold." @default.
- W1898488645 created "2016-06-24" @default.
- W1898488645 creator A5086921168 @default.
- W1898488645 date "2015-01-01" @default.
- W1898488645 modified "2023-09-23" @default.
- W1898488645 title "Unconditional Lower Bounds in Complexity Theory" @default.
- W1898488645 cites W100082232 @default.
- W1898488645 cites W112858668 @default.
- W1898488645 cites W126880940 @default.
- W1898488645 cites W1505739153 @default.
- W1898488645 cites W1515707347 @default.
- W1898488645 cites W1517526469 @default.
- W1898488645 cites W1520252399 @default.
- W1898488645 cites W1527197079 @default.
- W1898488645 cites W1530008367 @default.
- W1898488645 cites W1538406570 @default.
- W1898488645 cites W1547267927 @default.
- W1898488645 cites W1563465674 @default.
- W1898488645 cites W1566084191 @default.
- W1898488645 cites W1568706289 @default.
- W1898488645 cites W1570425181 @default.
- W1898488645 cites W1572772224 @default.
- W1898488645 cites W1585240433 @default.
- W1898488645 cites W1598514941 @default.
- W1898488645 cites W1599814229 @default.
- W1898488645 cites W1606064697 @default.
- W1898488645 cites W1606480398 @default.
- W1898488645 cites W1607926272 @default.
- W1898488645 cites W1615793053 @default.
- W1898488645 cites W1836127928 @default.
- W1898488645 cites W1891181203 @default.
- W1898488645 cites W1930088680 @default.
- W1898488645 cites W1930343750 @default.
- W1898488645 cites W1954490473 @default.
- W1898488645 cites W1965381909 @default.
- W1898488645 cites W1966205523 @default.
- W1898488645 cites W1966278576 @default.
- W1898488645 cites W1966541996 @default.
- W1898488645 cites W1969534344 @default.
- W1898488645 cites W1970056983 @default.
- W1898488645 cites W1970089350 @default.
- W1898488645 cites W1971718861 @default.
- W1898488645 cites W1973874352 @default.
- W1898488645 cites W1974426418 @default.
- W1898488645 cites W1974632918 @default.
- W1898488645 cites W1980147712 @default.
- W1898488645 cites W1980879781 @default.
- W1898488645 cites W1984108045 @default.
- W1898488645 cites W1984459117 @default.
- W1898488645 cites W1984477611 @default.
- W1898488645 cites W1985572324 @default.
- W1898488645 cites W1993138363 @default.
- W1898488645 cites W1994357693 @default.
- W1898488645 cites W1994584977 @default.
- W1898488645 cites W1995511496 @default.
- W1898488645 cites W1995725694 @default.
- W1898488645 cites W1995897489 @default.
- W1898488645 cites W1996268648 @default.
- W1898488645 cites W1996834809 @default.
- W1898488645 cites W1998964055 @default.
- W1898488645 cites W2004130530 @default.
- W1898488645 cites W2006252547 @default.
- W1898488645 cites W2006558104 @default.
- W1898488645 cites W2006912660 @default.
- W1898488645 cites W2011717937 @default.
- W1898488645 cites W2012476164 @default.
- W1898488645 cites W2012496360 @default.
- W1898488645 cites W2016506329 @default.
- W1898488645 cites W2016590269 @default.
- W1898488645 cites W2017290750 @default.
- W1898488645 cites W2019363670 @default.
- W1898488645 cites W2019807548 @default.
- W1898488645 cites W2021736779 @default.
- W1898488645 cites W2021972008 @default.
- W1898488645 cites W2024435371 @default.
- W1898488645 cites W2026036943 @default.
- W1898488645 cites W2026704052 @default.
- W1898488645 cites W2027221236 @default.
- W1898488645 cites W2027519504 @default.
- W1898488645 cites W2027528470 @default.
- W1898488645 cites W2029370139 @default.
- W1898488645 cites W2034437384 @default.
- W1898488645 cites W2036322072 @default.
- W1898488645 cites W2038272454 @default.
- W1898488645 cites W2039681975 @default.
- W1898488645 cites W2042194938 @default.
- W1898488645 cites W2045260280 @default.
- W1898488645 cites W2049016755 @default.
- W1898488645 cites W2050715481 @default.
- W1898488645 cites W2051174588 @default.
- W1898488645 cites W2051641102 @default.
- W1898488645 cites W2053969720 @default.
- W1898488645 cites W2054013713 @default.
- W1898488645 cites W2054271696 @default.
- W1898488645 cites W2057826895 @default.
- W1898488645 cites W205871068 @default.
- W1898488645 cites W2059387708 @default.
- W1898488645 cites W2060270693 @default.
- W1898488645 cites W2062855793 @default.
- W1898488645 cites W2064680241 @default.