Matches in SemOpenAlex for { <https://semopenalex.org/work/W1898730309> ?p ?o ?g. }
- W1898730309 abstract "The advances in next generation sequencing (NGS) technologies have tremendous impacts on the studies of structural and functional genomics. Sequencing-based approaches like ChIP-Seq and RNA-Seq have started taking the place of microarray experiments to study protein–DNA (deoxyribonucleic acid) interactions and transcriptomic profiling, respectively. The arrival of NGS technologies has also enabled several whole human genome resequencing studies to be completed efficiently at an affordable price. The major strengths of NGS technologies are their ultra high-throughput production, characterized by their ability to generate several hundred megabases to tens of gigabases of sequencing data per instrument run, and more importantly, the steep reduction in cost compared to the traditional Sanger sequencing method. Hence, NGS technologies have rapidly become the primary choice for large scale as well as genome-wide sequencing studies. The new sequencing-based approaches to explore structural and functional genomics have produced important information and significantly expanded our knowledge in these areas. Key concepts The rapid developments in sequencing technologies have transformed the approaches in the studies of structural and functional genomics. The arrival of next generation sequencing (NGS) technologies has started substituting traditional Sanger sequencing method in many large-scale or genome-wide sequencing studies. Shortly after the first next generation sequencer was introduced by Roche® 454 Life Science, the Genome Sequencer 20 (GS 20) System (it was subsequently replaced by GS FLX System), another two biotechnology companies also marketed their sequencing platforms: Illumina® Genome Analyzer (GA) and Applied Biosystems® (ABI) Supported Oligonucleotide Ligation Detection System (SOLiD). The major attractions of NGS technologies are their ultra high-throughput production, characterized by their ability to produce gigabases of sequencing data per instrument run, and more importantly, the steep reduction in cost compared to the traditional sequencing method. Previously, the molecular genomics studies mainly relied on microarray technologies such as gene expression microarrays and the ChIP-chip method (i.e. chromatin immunoprecipitation coupled with microarray) for genome-wide interrogation. The NGS technologies have been used in various research areas besides the standard sequencing applications such as whole genome sequencing; they have also been increasingly applied in detecting structural variations (paired-end mapping), studies of protein–DNA interactions and histone modifications (ChIP-Seq) and transcriptomic profiling of messenger RNAs (mRNAs) and noncoding RNAs (RNA-Seq). Sequencing-based approaches have already yielded numerous novel and important findings in research areas like genome-wide mapping of histone modifications and protein–DNA interactions, discovery of genetic variations and transcriptomics studies even though the approaches are still new and maturing. The NGS technologies have shown their potential of being dominant in future genomics studies. This is evident from several international projects using NGS technologies like the ENCODE Project, 1000 Genomes Project and cancers sequencing project by the International Cancer Genome Consortium. It is only a matter of time before achieving the goal of $1000 per whole genome sequencing. This should not be too far from now given the progresses in the development of third generation sequencing technologies. Although the $1000 genome will technically make sequencing of thousands of human genomes a reality, the substantial cost that will be incurred for data storage, powerful computational packages and analytical softwares has to be borne in mind. However, beyond affordability, what are left behind are the bioinformatics challenges in processing and analysing the huge amount of sequencing data." @default.
- W1898730309 created "2016-06-24" @default.
- W1898730309 creator A5012606625 @default.
- W1898730309 creator A5024892895 @default.
- W1898730309 creator A5069620179 @default.
- W1898730309 creator A5076646614 @default.
- W1898730309 date "2010-04-19" @default.
- W1898730309 modified "2023-10-18" @default.
- W1898730309 title "Next Generation Sequencing Technologies and Their Applications" @default.
- W1898730309 cites W1754416883 @default.
- W1898730309 cites W1963553964 @default.
- W1898730309 cites W1968475238 @default.
- W1898730309 cites W1973950074 @default.
- W1898730309 cites W1981509058 @default.
- W1898730309 cites W1999674531 @default.
- W1898730309 cites W2001725958 @default.
- W1898730309 cites W2001798854 @default.
- W1898730309 cites W2004791359 @default.
- W1898730309 cites W2009440421 @default.
- W1898730309 cites W2011920499 @default.
- W1898730309 cites W2012016911 @default.
- W1898730309 cites W2015416439 @default.
- W1898730309 cites W2022603493 @default.
- W1898730309 cites W2024975965 @default.
- W1898730309 cites W2030692069 @default.
- W1898730309 cites W2037953066 @default.
- W1898730309 cites W2046601740 @default.
- W1898730309 cites W2047361940 @default.
- W1898730309 cites W2048772283 @default.
- W1898730309 cites W2058839892 @default.
- W1898730309 cites W2059699217 @default.
- W1898730309 cites W2061680337 @default.
- W1898730309 cites W2063994095 @default.
- W1898730309 cites W2064469303 @default.
- W1898730309 cites W2065948772 @default.
- W1898730309 cites W2087261765 @default.
- W1898730309 cites W2087444873 @default.
- W1898730309 cites W2094174059 @default.
- W1898730309 cites W2098207011 @default.
- W1898730309 cites W2101466802 @default.
- W1898730309 cites W2102304447 @default.
- W1898730309 cites W2103903744 @default.
- W1898730309 cites W2108698786 @default.
- W1898730309 cites W2113649367 @default.
- W1898730309 cites W2116753165 @default.
- W1898730309 cites W2118737448 @default.
- W1898730309 cites W2124873881 @default.
- W1898730309 cites W2129795133 @default.
- W1898730309 cites W2137779717 @default.
- W1898730309 cites W2137839234 @default.
- W1898730309 cites W2138603354 @default.
- W1898730309 cites W2140869203 @default.
- W1898730309 cites W2142642738 @default.
- W1898730309 cites W2149427050 @default.
- W1898730309 cites W2153010521 @default.
- W1898730309 cites W2160825263 @default.
- W1898730309 cites W2164631357 @default.
- W1898730309 cites W2171111703 @default.
- W1898730309 cites W2612812586 @default.
- W1898730309 cites W4297585095 @default.
- W1898730309 doi "https://doi.org/10.1002/9780470015902.a0022508" @default.
- W1898730309 hasPublicationYear "2010" @default.
- W1898730309 type Work @default.
- W1898730309 sameAs 1898730309 @default.
- W1898730309 citedByCount "5" @default.
- W1898730309 countsByYear W18987303092012 @default.
- W1898730309 countsByYear W18987303092014 @default.
- W1898730309 countsByYear W18987303092017 @default.
- W1898730309 countsByYear W18987303092022 @default.
- W1898730309 crossrefType "other" @default.
- W1898730309 hasAuthorship W1898730309A5012606625 @default.
- W1898730309 hasAuthorship W1898730309A5024892895 @default.
- W1898730309 hasAuthorship W1898730309A5069620179 @default.
- W1898730309 hasAuthorship W1898730309A5076646614 @default.
- W1898730309 hasConcept C104317684 @default.
- W1898730309 hasConcept C113425843 @default.
- W1898730309 hasConcept C141231307 @default.
- W1898730309 hasConcept C164928082 @default.
- W1898730309 hasConcept C16671776 @default.
- W1898730309 hasConcept C174749747 @default.
- W1898730309 hasConcept C189206191 @default.
- W1898730309 hasConcept C192953774 @default.
- W1898730309 hasConcept C205270622 @default.
- W1898730309 hasConcept C24103923 @default.
- W1898730309 hasConcept C501734568 @default.
- W1898730309 hasConcept C51679486 @default.
- W1898730309 hasConcept C54355233 @default.
- W1898730309 hasConcept C70721500 @default.
- W1898730309 hasConcept C76818968 @default.
- W1898730309 hasConcept C86803240 @default.
- W1898730309 hasConceptScore W1898730309C104317684 @default.
- W1898730309 hasConceptScore W1898730309C113425843 @default.
- W1898730309 hasConceptScore W1898730309C141231307 @default.
- W1898730309 hasConceptScore W1898730309C164928082 @default.
- W1898730309 hasConceptScore W1898730309C16671776 @default.
- W1898730309 hasConceptScore W1898730309C174749747 @default.
- W1898730309 hasConceptScore W1898730309C189206191 @default.
- W1898730309 hasConceptScore W1898730309C192953774 @default.
- W1898730309 hasConceptScore W1898730309C205270622 @default.
- W1898730309 hasConceptScore W1898730309C24103923 @default.