Matches in SemOpenAlex for { <https://semopenalex.org/work/W19004744> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W19004744 endingPage "100" @default.
- W19004744 startingPage "89" @default.
- W19004744 abstract "This chapter presents three remarks about the Cauchy problem for effectively hyperbolic equations. The first remark is concerned with the method of proof that is more simplified than the old one. The second remark is about the bicharacteristic curves. The last remark gives an application to the hyperbolic Monge–Ampere equation. The dependence of estimates on the coefficients of equation is obtained by differentiation of both sides of the equation after obtaining an estimate whose dependence on the coefficients is not clear. The bicharacteristic curves through the critical points behave as well as ones in the case that b2 ≡0 do—they bifurcate at the critical points. The Monge–Ampere equation is one of typical nonlinear equations with application to the geometry." @default.
- W19004744 created "2016-06-24" @default.
- W19004744 creator A5082572616 @default.
- W19004744 date "1986-01-01" @default.
- W19004744 modified "2023-09-23" @default.
- W19004744 title "The Cauchy Problem for Effectively Hyperbolic Equations (Remarks)" @default.
- W19004744 cites W1482116893 @default.
- W19004744 cites W1595314735 @default.
- W19004744 cites W1972358919 @default.
- W19004744 cites W1977930898 @default.
- W19004744 cites W1989782200 @default.
- W19004744 cites W2013638021 @default.
- W19004744 cites W2035250824 @default.
- W19004744 cites W2061691923 @default.
- W19004744 cites W2081973188 @default.
- W19004744 cites W2799311631 @default.
- W19004744 doi "https://doi.org/10.1016/b978-0-12-501658-2.50010-5" @default.
- W19004744 hasPublicationYear "1986" @default.
- W19004744 type Work @default.
- W19004744 sameAs 19004744 @default.
- W19004744 citedByCount "5" @default.
- W19004744 countsByYear W190047442015 @default.
- W19004744 countsByYear W190047442017 @default.
- W19004744 crossrefType "book-chapter" @default.
- W19004744 hasAuthorship W19004744A5082572616 @default.
- W19004744 hasConcept C111615704 @default.
- W19004744 hasConcept C121332964 @default.
- W19004744 hasConcept C134306372 @default.
- W19004744 hasConcept C153635880 @default.
- W19004744 hasConcept C158622935 @default.
- W19004744 hasConcept C26955809 @default.
- W19004744 hasConcept C2777808208 @default.
- W19004744 hasConcept C33923547 @default.
- W19004744 hasConcept C49344536 @default.
- W19004744 hasConcept C62520636 @default.
- W19004744 hasConcept C93779851 @default.
- W19004744 hasConceptScore W19004744C111615704 @default.
- W19004744 hasConceptScore W19004744C121332964 @default.
- W19004744 hasConceptScore W19004744C134306372 @default.
- W19004744 hasConceptScore W19004744C153635880 @default.
- W19004744 hasConceptScore W19004744C158622935 @default.
- W19004744 hasConceptScore W19004744C26955809 @default.
- W19004744 hasConceptScore W19004744C2777808208 @default.
- W19004744 hasConceptScore W19004744C33923547 @default.
- W19004744 hasConceptScore W19004744C49344536 @default.
- W19004744 hasConceptScore W19004744C62520636 @default.
- W19004744 hasConceptScore W19004744C93779851 @default.
- W19004744 hasLocation W190047441 @default.
- W19004744 hasOpenAccess W19004744 @default.
- W19004744 hasPrimaryLocation W190047441 @default.
- W19004744 hasRelatedWork W1965141023 @default.
- W19004744 hasRelatedWork W1998680379 @default.
- W19004744 hasRelatedWork W2026618914 @default.
- W19004744 hasRelatedWork W2045532529 @default.
- W19004744 hasRelatedWork W2104590963 @default.
- W19004744 hasRelatedWork W2314982570 @default.
- W19004744 hasRelatedWork W2334432913 @default.
- W19004744 hasRelatedWork W2393102384 @default.
- W19004744 hasRelatedWork W3005127498 @default.
- W19004744 hasRelatedWork W3101230457 @default.
- W19004744 isParatext "false" @default.
- W19004744 isRetracted "false" @default.
- W19004744 magId "19004744" @default.
- W19004744 workType "book-chapter" @default.