Matches in SemOpenAlex for { <https://semopenalex.org/work/W1901486305> ?p ?o ?g. }
- W1901486305 abstract "The thesis is divided in two parts. In the first part of the thesis, I present an updated version of the theory of covariant quantum mechanics and of the associated classical background. This theory has originally been proposed by Jadczyk and Modugno and further developed in cooperation with other people. It provides a geometric model for quantum mechanics of a scalar and spin particle in a curved spacetime with absolute time equipped with a given classical gravitational and electromagnetic field. Starting from minimal axioms, this model yields in a covariant way the Schrodinger equation by means of a global Lagrangian formalism and the quantum operators associated with classical quantisable functions by means of classification of distinguished quantum vector fields. In the second part of the thesis, I investigate systematically the infinitesimal symmetries of the classical and quantum geometric structures. This part deals with the main original contributions of the thesis. Some results fit well-known facts of other mathematical models of quantum mechanics, but are derived by innovative procedures. Other results are completely new. The most important original contributions can be summarized by the following two statements: The quantum symmetries constitute Lie algebras, which are naturally isomorphic to subalgebras of the new classical Lie algebra of quantisable functions. Let me stress that this algebra is not a Poisson subalgebra. On the other hand, by means of the quantum Lagrangian formalism, we can associate a conserved quantum current with any element of a distinguished classical subalgebra. These results might be the prequantum source of the probabilistic interpretation of quantum mechanics." @default.
- W1901486305 created "2016-06-24" @default.
- W1901486305 creator A5015783958 @default.
- W1901486305 date "2001-01-01" @default.
- W1901486305 modified "2023-10-16" @default.
- W1901486305 title "Symmetries in covariant quantum mechanics" @default.
- W1901486305 cites W123439666 @default.
- W1901486305 cites W1485936747 @default.
- W1901486305 cites W1513060653 @default.
- W1901486305 cites W1515431404 @default.
- W1901486305 cites W1524590822 @default.
- W1901486305 cites W1525341226 @default.
- W1901486305 cites W1537002379 @default.
- W1901486305 cites W1547281537 @default.
- W1901486305 cites W1548885441 @default.
- W1901486305 cites W1552736770 @default.
- W1901486305 cites W1567875216 @default.
- W1901486305 cites W1575757764 @default.
- W1901486305 cites W1588860486 @default.
- W1901486305 cites W1595706083 @default.
- W1901486305 cites W1609614949 @default.
- W1901486305 cites W1662122678 @default.
- W1901486305 cites W171432391 @default.
- W1901486305 cites W173104392 @default.
- W1901486305 cites W1965075382 @default.
- W1901486305 cites W1969062923 @default.
- W1901486305 cites W1970179478 @default.
- W1901486305 cites W1970659463 @default.
- W1901486305 cites W1972079578 @default.
- W1901486305 cites W1972431927 @default.
- W1901486305 cites W1973482569 @default.
- W1901486305 cites W1973883893 @default.
- W1901486305 cites W1974814560 @default.
- W1901486305 cites W197484513 @default.
- W1901486305 cites W1975725556 @default.
- W1901486305 cites W1976779545 @default.
- W1901486305 cites W1978654044 @default.
- W1901486305 cites W1982368032 @default.
- W1901486305 cites W1984710817 @default.
- W1901486305 cites W1987020579 @default.
- W1901486305 cites W1990357192 @default.
- W1901486305 cites W200634840 @default.
- W1901486305 cites W2008318869 @default.
- W1901486305 cites W2008379975 @default.
- W1901486305 cites W2009785068 @default.
- W1901486305 cites W2010863260 @default.
- W1901486305 cites W2020422608 @default.
- W1901486305 cites W2022290535 @default.
- W1901486305 cites W202257981 @default.
- W1901486305 cites W2026829760 @default.
- W1901486305 cites W2027355021 @default.
- W1901486305 cites W2041599711 @default.
- W1901486305 cites W2045785022 @default.
- W1901486305 cites W2046669744 @default.
- W1901486305 cites W2047910607 @default.
- W1901486305 cites W2049687524 @default.
- W1901486305 cites W2052081183 @default.
- W1901486305 cites W2053567854 @default.
- W1901486305 cites W2056463080 @default.
- W1901486305 cites W2058008825 @default.
- W1901486305 cites W2062474510 @default.
- W1901486305 cites W2064854048 @default.
- W1901486305 cites W2067370016 @default.
- W1901486305 cites W2068817535 @default.
- W1901486305 cites W2087664212 @default.
- W1901486305 cites W2092445601 @default.
- W1901486305 cites W2093595837 @default.
- W1901486305 cites W2095059915 @default.
- W1901486305 cites W2117623725 @default.
- W1901486305 cites W2120121612 @default.
- W1901486305 cites W2120620246 @default.
- W1901486305 cites W2123725682 @default.
- W1901486305 cites W2147175253 @default.
- W1901486305 cites W2150487474 @default.
- W1901486305 cites W2168536495 @default.
- W1901486305 cites W2171289638 @default.
- W1901486305 cites W2172527779 @default.
- W1901486305 cites W2186219197 @default.
- W1901486305 cites W2210360533 @default.
- W1901486305 cites W2304389994 @default.
- W1901486305 cites W2316150937 @default.
- W1901486305 cites W2331490077 @default.
- W1901486305 cites W2342811272 @default.
- W1901486305 cites W2482451028 @default.
- W1901486305 cites W2529097147 @default.
- W1901486305 cites W2571255480 @default.
- W1901486305 cites W2586693300 @default.
- W1901486305 cites W2590826966 @default.
- W1901486305 cites W2595373252 @default.
- W1901486305 cites W2603149421 @default.
- W1901486305 cites W2733064468 @default.
- W1901486305 cites W2962890909 @default.
- W1901486305 cites W2988131454 @default.
- W1901486305 cites W31217905 @default.
- W1901486305 cites W581959860 @default.
- W1901486305 cites W614202555 @default.
- W1901486305 cites W629633593 @default.
- W1901486305 cites W85133216 @default.
- W1901486305 cites W85603235 @default.
- W1901486305 cites W2494639355 @default.