Matches in SemOpenAlex for { <https://semopenalex.org/work/W1903480762> ?p ?o ?g. }
- W1903480762 abstract "Experimental data and observations, whether telescopic or analytical, are never wrong, though data derived from such sources can be misinterpreted or applied inappropriately to derive conclusions that are incorrect. Given that nature always behaves according to the laws of physics and chemistry, rather than according to currently popular models and theories, experimental results should always be considered correct even when the results are far from those that one might initially expect. We discuss a number of cases where the results of experiments, even one carried out as a simple calibration measure, produced wildly different results that generally required many years of effort or contemplation to understand. On the positive side, exploration of the circumstances that produced the errant results often led to new and interesting insights concerning processes that might occur in natural environments and that were well worth the effort involved. Specifically, we show how an experiment that failed due to a broken conductor led to experiments that made the first refractory oxide solids containing mass independently fractionated oxygen isotopes and to 1998 predictions of the oxygen isotopic composition of the sun that were confirmed by the analysis of Genesis samples in 2011. We describe a calibration experiment that unexpectedly produced single magnetic domain iron particles. We discuss how tracking down a persistent source of contamination in experiments intended to produce amorphous iron and magnesium silicate smokes led to a series of studies on the synthesis of carbonaceous grain coatings that turn out to be very efficient Fischer-Tropsch catalysts and have great potential for trapping the planetary noble gases found in meteorites. We describe how models predicting the instability of silicate grains in circumstellar environments spurred new measurements of the vapor pressure of SiO partially based on previous experiments showing unexpected but systematic non-equilibrium behavior instead of the anticipated equilibrium products resembling meteoritic minerals. We trace the process that led from observations of the presence of crystalline minerals detected in the comae of some comets to the 1999 prediction of large-scale circulation of materials from the hot, innermost regions of the solar nebula out to the cold dark nebular environments where comets form. This large-scale circulation was ultimately confirmed by analyses of highly refractory Stardust samples collected from the Kuiper Belt Comet Wild 2. Finally we discuss a modern and still unresolved conflict between the assumptions built into three well known processes: the CO Self Shielding Model for mass independent isotopic fractionation of oxygen in solar system solids, rapid and thorough mixing within the solar nebula, and the efficient conversion of CO into organic coatings and volatiles on the surfaces of nebular grains via Fischer-Tropsch-type processes." @default.
- W1903480762 created "2016-06-24" @default.
- W1903480762 creator A5025252005 @default.
- W1903480762 creator A5038762851 @default.
- W1903480762 creator A5058335328 @default.
- W1903480762 creator A5066694834 @default.
- W1903480762 creator A5089515694 @default.
- W1903480762 date "2016-03-01" @default.
- W1903480762 modified "2023-10-04" @default.
- W1903480762 title "Great new insights from failed experiments, unanticipated results and embracing controversial observations" @default.
- W1903480762 cites W1504462630 @default.
- W1903480762 cites W1517097553 @default.
- W1903480762 cites W1543021154 @default.
- W1903480762 cites W1550922272 @default.
- W1903480762 cites W1590782304 @default.
- W1903480762 cites W1647915962 @default.
- W1903480762 cites W1676452055 @default.
- W1903480762 cites W1966080450 @default.
- W1903480762 cites W1968354114 @default.
- W1903480762 cites W1969312936 @default.
- W1903480762 cites W1970124765 @default.
- W1903480762 cites W1970203885 @default.
- W1903480762 cites W1985303593 @default.
- W1903480762 cites W1990646059 @default.
- W1903480762 cites W1992596430 @default.
- W1903480762 cites W1995890642 @default.
- W1903480762 cites W1996251441 @default.
- W1903480762 cites W1997496219 @default.
- W1903480762 cites W2000787699 @default.
- W1903480762 cites W2005374858 @default.
- W1903480762 cites W2007352916 @default.
- W1903480762 cites W2009114839 @default.
- W1903480762 cites W2018375615 @default.
- W1903480762 cites W2018652096 @default.
- W1903480762 cites W2019238435 @default.
- W1903480762 cites W2023959382 @default.
- W1903480762 cites W2025767780 @default.
- W1903480762 cites W2031108369 @default.
- W1903480762 cites W2034223761 @default.
- W1903480762 cites W2034327200 @default.
- W1903480762 cites W2036154953 @default.
- W1903480762 cites W2036383328 @default.
- W1903480762 cites W2036512801 @default.
- W1903480762 cites W2036711430 @default.
- W1903480762 cites W2037427921 @default.
- W1903480762 cites W2038396041 @default.
- W1903480762 cites W2043145450 @default.
- W1903480762 cites W2045948986 @default.
- W1903480762 cites W2049261723 @default.
- W1903480762 cites W2049586639 @default.
- W1903480762 cites W2049653719 @default.
- W1903480762 cites W2056942192 @default.
- W1903480762 cites W2060025829 @default.
- W1903480762 cites W2065123560 @default.
- W1903480762 cites W2066234575 @default.
- W1903480762 cites W2067144031 @default.
- W1903480762 cites W2075602738 @default.
- W1903480762 cites W2077017611 @default.
- W1903480762 cites W2082223128 @default.
- W1903480762 cites W2082725898 @default.
- W1903480762 cites W2084799664 @default.
- W1903480762 cites W2084852184 @default.
- W1903480762 cites W2086536685 @default.
- W1903480762 cites W2087800490 @default.
- W1903480762 cites W2091037243 @default.
- W1903480762 cites W2092497929 @default.
- W1903480762 cites W2093498773 @default.
- W1903480762 cites W2093921220 @default.
- W1903480762 cites W2102530828 @default.
- W1903480762 cites W2111490211 @default.
- W1903480762 cites W2125848912 @default.
- W1903480762 cites W2127393091 @default.
- W1903480762 cites W2132345021 @default.
- W1903480762 cites W2145598654 @default.
- W1903480762 cites W2155992099 @default.
- W1903480762 cites W2997896554 @default.
- W1903480762 cites W3044835684 @default.
- W1903480762 cites W308983763 @default.
- W1903480762 doi "https://doi.org/10.1016/j.chemer.2015.09.002" @default.
- W1903480762 hasPublicationYear "2016" @default.
- W1903480762 type Work @default.
- W1903480762 sameAs 1903480762 @default.
- W1903480762 citedByCount "2" @default.
- W1903480762 countsByYear W19034807622017 @default.
- W1903480762 countsByYear W19034807622020 @default.
- W1903480762 crossrefType "journal-article" @default.
- W1903480762 hasAuthorship W1903480762A5025252005 @default.
- W1903480762 hasAuthorship W1903480762A5038762851 @default.
- W1903480762 hasAuthorship W1903480762A5058335328 @default.
- W1903480762 hasAuthorship W1903480762A5066694834 @default.
- W1903480762 hasAuthorship W1903480762A5089515694 @default.
- W1903480762 hasConcept C105795698 @default.
- W1903480762 hasConcept C111472728 @default.
- W1903480762 hasConcept C127313418 @default.
- W1903480762 hasConcept C138885662 @default.
- W1903480762 hasConcept C151730666 @default.
- W1903480762 hasConcept C165838908 @default.
- W1903480762 hasConcept C171250308 @default.
- W1903480762 hasConcept C178790620 @default.
- W1903480762 hasConcept C185592680 @default.