Matches in SemOpenAlex for { <https://semopenalex.org/work/W1903533072> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1903533072 abstract "Our study describes many new opportunities for using neural networks in physics. We have mapped types of physics problems to analogous applications in other areas of science and engineering. While many applications are possible, little work can be found in the literature. Our specific example shows an interesting and useful application for predicting concentrations of radioactivity in the environment. Known levels of radioactivity, along with the values of other environmental variables, can be used to train a network for estimating subsequent levels. The accuracy of the neural network approach is better than other methods for specific monitoring locations. The possibility of finding generic patterns that can be used across different locations will be discussed." @default.
- W1903533072 created "2016-06-24" @default.
- W1903533072 creator A5027516536 @default.
- W1903533072 creator A5045037964 @default.
- W1903533072 creator A5047234225 @default.
- W1903533072 creator A5051615568 @default.
- W1903533072 creator A5066434581 @default.
- W1903533072 date "2002-11-13" @default.
- W1903533072 modified "2023-09-26" @default.
- W1903533072 title "Neural network applications in physics" @default.
- W1903533072 cites W1511048579 @default.
- W1903533072 cites W189058675 @default.
- W1903533072 cites W1975464045 @default.
- W1903533072 cites W2000061362 @default.
- W1903533072 cites W2004023346 @default.
- W1903533072 cites W2008756505 @default.
- W1903533072 cites W2031497471 @default.
- W1903533072 cites W2036795826 @default.
- W1903533072 cites W2050277061 @default.
- W1903533072 cites W2073492708 @default.
- W1903533072 cites W2075130773 @default.
- W1903533072 cites W2078974763 @default.
- W1903533072 cites W2094808678 @default.
- W1903533072 cites W2115873889 @default.
- W1903533072 cites W2479630806 @default.
- W1903533072 cites W2523782203 @default.
- W1903533072 cites W3099219387 @default.
- W1903533072 cites W4246599888 @default.
- W1903533072 cites W4301971222 @default.
- W1903533072 doi "https://doi.org/10.1109/ijcnn.2001.938482" @default.
- W1903533072 hasPublicationYear "2002" @default.
- W1903533072 type Work @default.
- W1903533072 sameAs 1903533072 @default.
- W1903533072 citedByCount "5" @default.
- W1903533072 countsByYear W19035330722013 @default.
- W1903533072 countsByYear W19035330722021 @default.
- W1903533072 countsByYear W19035330722022 @default.
- W1903533072 crossrefType "proceedings-article" @default.
- W1903533072 hasAuthorship W1903533072A5027516536 @default.
- W1903533072 hasAuthorship W1903533072A5045037964 @default.
- W1903533072 hasAuthorship W1903533072A5047234225 @default.
- W1903533072 hasAuthorship W1903533072A5051615568 @default.
- W1903533072 hasAuthorship W1903533072A5066434581 @default.
- W1903533072 hasConcept C154945302 @default.
- W1903533072 hasConcept C41008148 @default.
- W1903533072 hasConcept C50644808 @default.
- W1903533072 hasConceptScore W1903533072C154945302 @default.
- W1903533072 hasConceptScore W1903533072C41008148 @default.
- W1903533072 hasConceptScore W1903533072C50644808 @default.
- W1903533072 hasLocation W19035330721 @default.
- W1903533072 hasOpenAccess W1903533072 @default.
- W1903533072 hasPrimaryLocation W19035330721 @default.
- W1903533072 hasRelatedWork W2049775471 @default.
- W1903533072 hasRelatedWork W2093578348 @default.
- W1903533072 hasRelatedWork W2350741829 @default.
- W1903533072 hasRelatedWork W2358668433 @default.
- W1903533072 hasRelatedWork W2376932109 @default.
- W1903533072 hasRelatedWork W2382290278 @default.
- W1903533072 hasRelatedWork W2386387936 @default.
- W1903533072 hasRelatedWork W2390279801 @default.
- W1903533072 hasRelatedWork W2748952813 @default.
- W1903533072 hasRelatedWork W2899084033 @default.
- W1903533072 isParatext "false" @default.
- W1903533072 isRetracted "false" @default.
- W1903533072 magId "1903533072" @default.
- W1903533072 workType "article" @default.