Matches in SemOpenAlex for { <https://semopenalex.org/work/W1903595874> ?p ?o ?g. }
- W1903595874 endingPage "875" @default.
- W1903595874 startingPage "859" @default.
- W1903595874 abstract "Molecularly targeted agent (MTA) combination therapy is in the early stages of development. When using a fixed dose of one agent in combinations of MTAs, toxicity and efficacy do not necessarily increase with an increasing dose of the other agent. Thus, in dose‐finding trials for combinations of MTAs, interest may lie in identifying the optimal biological dose combinations (OBDCs), defined as the lowest dose combinations (in a certain sense) that are safe and have the highest efficacy level meeting a prespecified target. The limited existing designs for these trials use parametric dose–efficacy and dose–toxicity models. Motivated by a phase I/II clinical trial of a combination of two MTAs in patients with pancreatic, endometrial, or colorectal cancer, we propose Bayesian dose‐finding designs to identify the OBDCs without parametric model assumptions. The proposed approach is based only on partial stochastic ordering assumptions for the effects of the combined MTAs and uses isotonic regression to estimate partially stochastically ordered marginal posterior distributions of the efficacy and toxicity probabilities. We demonstrate that our proposed method appropriately accounts for the partial ordering constraints, including potential plateaus on the dose–response surfaces, and is computationally efficient. We develop a dose‐combination‐finding algorithm to identify the OBDCs. We use simulations to compare the proposed designs with an alternative design based on Bayesian isotonic regression transformation and a design based on parametric change‐point dose–toxicity and dose–efficacy models and demonstrate desirable operating characteristics of the proposed designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd." @default.
- W1903595874 created "2016-06-24" @default.
- W1903595874 creator A5050819217 @default.
- W1903595874 creator A5088226132 @default.
- W1903595874 date "2015-02-28" @default.
- W1903595874 modified "2023-10-16" @default.
- W1903595874 title "Bayesian dose‐finding designs for combination of molecularly targeted agents assuming partial stochastic ordering" @default.
- W1903595874 cites W1428073324 @default.
- W1903595874 cites W1536618208 @default.
- W1903595874 cites W157796586 @default.
- W1903595874 cites W1641029843 @default.
- W1903595874 cites W1965231777 @default.
- W1903595874 cites W1976972195 @default.
- W1903595874 cites W1979554795 @default.
- W1903595874 cites W1981259795 @default.
- W1903595874 cites W1984424377 @default.
- W1903595874 cites W1999655860 @default.
- W1903595874 cites W2006862074 @default.
- W1903595874 cites W2041439551 @default.
- W1903595874 cites W2046121575 @default.
- W1903595874 cites W2071941141 @default.
- W1903595874 cites W2080114818 @default.
- W1903595874 cites W2085336204 @default.
- W1903595874 cites W2093172868 @default.
- W1903595874 cites W2097166956 @default.
- W1903595874 cites W2113073012 @default.
- W1903595874 cites W2129546350 @default.
- W1903595874 cites W2131642655 @default.
- W1903595874 cites W2132593849 @default.
- W1903595874 cites W2133954805 @default.
- W1903595874 cites W2142733678 @default.
- W1903595874 cites W2143661751 @default.
- W1903595874 cites W2149628358 @default.
- W1903595874 cites W2158322128 @default.
- W1903595874 cites W2160736592 @default.
- W1903595874 cites W2164743403 @default.
- W1903595874 cites W2167162853 @default.
- W1903595874 cites W2325726156 @default.
- W1903595874 cites W4254387140 @default.
- W1903595874 cites W2133425730 @default.
- W1903595874 doi "https://doi.org/10.1002/sim.6376" @default.
- W1903595874 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4359011" @default.
- W1903595874 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25413162" @default.
- W1903595874 hasPublicationYear "2015" @default.
- W1903595874 type Work @default.
- W1903595874 sameAs 1903595874 @default.
- W1903595874 citedByCount "9" @default.
- W1903595874 countsByYear W19035958742015 @default.
- W1903595874 countsByYear W19035958742016 @default.
- W1903595874 countsByYear W19035958742017 @default.
- W1903595874 countsByYear W19035958742018 @default.
- W1903595874 countsByYear W19035958742019 @default.
- W1903595874 countsByYear W19035958742020 @default.
- W1903595874 countsByYear W19035958742021 @default.
- W1903595874 countsByYear W19035958742023 @default.
- W1903595874 crossrefType "journal-article" @default.
- W1903595874 hasAuthorship W1903595874A5050819217 @default.
- W1903595874 hasAuthorship W1903595874A5088226132 @default.
- W1903595874 hasBestOaLocation W19035958741 @default.
- W1903595874 hasConcept C105795698 @default.
- W1903595874 hasConcept C107673813 @default.
- W1903595874 hasConcept C117251300 @default.
- W1903595874 hasConcept C149857219 @default.
- W1903595874 hasConcept C17418463 @default.
- W1903595874 hasConcept C185429906 @default.
- W1903595874 hasConcept C207201462 @default.
- W1903595874 hasConcept C2989005 @default.
- W1903595874 hasConcept C33923547 @default.
- W1903595874 hasConcept C41008148 @default.
- W1903595874 hasConcept C71924100 @default.
- W1903595874 hasConceptScore W1903595874C105795698 @default.
- W1903595874 hasConceptScore W1903595874C107673813 @default.
- W1903595874 hasConceptScore W1903595874C117251300 @default.
- W1903595874 hasConceptScore W1903595874C149857219 @default.
- W1903595874 hasConceptScore W1903595874C17418463 @default.
- W1903595874 hasConceptScore W1903595874C185429906 @default.
- W1903595874 hasConceptScore W1903595874C207201462 @default.
- W1903595874 hasConceptScore W1903595874C2989005 @default.
- W1903595874 hasConceptScore W1903595874C33923547 @default.
- W1903595874 hasConceptScore W1903595874C41008148 @default.
- W1903595874 hasConceptScore W1903595874C71924100 @default.
- W1903595874 hasFunder F4320337351 @default.
- W1903595874 hasIssue "5" @default.
- W1903595874 hasLocation W19035958741 @default.
- W1903595874 hasLocation W19035958742 @default.
- W1903595874 hasLocation W19035958743 @default.
- W1903595874 hasLocation W19035958744 @default.
- W1903595874 hasOpenAccess W1903595874 @default.
- W1903595874 hasPrimaryLocation W19035958741 @default.
- W1903595874 hasRelatedWork W1976334997 @default.
- W1903595874 hasRelatedWork W2026372345 @default.
- W1903595874 hasRelatedWork W2117545158 @default.
- W1903595874 hasRelatedWork W2172199775 @default.
- W1903595874 hasRelatedWork W2378697222 @default.
- W1903595874 hasRelatedWork W2805765683 @default.
- W1903595874 hasRelatedWork W2952244802 @default.
- W1903595874 hasRelatedWork W3187479004 @default.
- W1903595874 hasRelatedWork W4253676545 @default.