Matches in SemOpenAlex for { <https://semopenalex.org/work/W1904920106> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1904920106 endingPage "128" @default.
- W1904920106 startingPage "116" @default.
- W1904920106 abstract "This paper is the finalreport for the author's anouncement of the same title,appeared in Lect. Notes in Math., 1090, Springer-Verlag ([15]). It contains the results of the anouncement and their detailed proofs, and some further results. Now symmetric submanifold is defined analogously to riemannian symmetric space. Namely, for riemannian symmetric space itis assumed, the existence of the (intrinsic)symmetry at each point. And for symmetric submanifold itis assumed, the existence of the extrinsic symmetry at each point in the submanifold. If the ambient spaces are riemannian symmetric spaces, symmetric submanifolds are locally characterized as submanifolds with parallelsecond fundamental form which satisfy some condition on the normal spaces. (See Theorem 1.3.) This characterization corresponds to the characterization that riemannian symmetric spaces are riemannian manifolds with parallel curvature tensor locally.If the ambient spaces are rank-one symmetric spaces, submanifolds with parallel second fundamental form have already been classified by several mathematicians. (See [1], [4], [5], [9], [10], [13], [14], [17], [18], [21], [22].) Hence we can take up symmetric submanifolds of their spaces. But if the ambient spaces are other riemannian symmetric spaces, the symmetric submanifolds are almost unknown except Tsukada [23]. In this paper we consider the classification for the case when the ambient spaces are compact simply connected riemannian symmetric spaces. Firstly we will show that symmetric submanifolds of compact riemannian manifolds are equivariant for certain Lie groups acting transitively on the submanifolds, that is, the inclusions are induced from Lie group homomorphisms of the Lie groups into the isometry groups of the ambient spaces. (See Theorem 2.5.) This result implies that our classification may be reduced into that of certain algebraic objects associated with Lie group or Lie algebra. Next for symmetric submanifolds we will define the totally geodesic symmetric submanifolds tangent to the original symmetric submanifolds, and divide our classification problem into the following two steps. The first step is to classify the associated totally geodesic symmetric submanifolds. This is reduced to the local classification of non-" @default.
- W1904920106 created "2016-06-24" @default.
- W1904920106 creator A5015569218 @default.
- W1904920106 date "1984-01-01" @default.
- W1904920106 modified "2023-09-26" @default.
- W1904920106 title "Symmetric submanifolds of compact symmetric spaces" @default.
- W1904920106 cites W1932288919 @default.
- W1904920106 cites W2003609970 @default.
- W1904920106 cites W2012867610 @default.
- W1904920106 cites W2059728142 @default.
- W1904920106 cites W2090770313 @default.
- W1904920106 cites W2095410135 @default.
- W1904920106 cites W2381670531 @default.
- W1904920106 cites W257079340 @default.
- W1904920106 doi "https://doi.org/10.1007/bfb0101572" @default.
- W1904920106 hasPublicationYear "1984" @default.
- W1904920106 type Work @default.
- W1904920106 sameAs 1904920106 @default.
- W1904920106 citedByCount "20" @default.
- W1904920106 countsByYear W19049201062012 @default.
- W1904920106 countsByYear W19049201062014 @default.
- W1904920106 countsByYear W19049201062015 @default.
- W1904920106 countsByYear W19049201062018 @default.
- W1904920106 crossrefType "book-chapter" @default.
- W1904920106 hasAuthorship W1904920106A5015569218 @default.
- W1904920106 hasBestOaLocation W19049201062 @default.
- W1904920106 hasConcept C109385661 @default.
- W1904920106 hasConcept C12089564 @default.
- W1904920106 hasConcept C12520029 @default.
- W1904920106 hasConcept C127299034 @default.
- W1904920106 hasConcept C134306372 @default.
- W1904920106 hasConcept C139941754 @default.
- W1904920106 hasConcept C1432948 @default.
- W1904920106 hasConcept C151300846 @default.
- W1904920106 hasConcept C187915474 @default.
- W1904920106 hasConcept C195065555 @default.
- W1904920106 hasConcept C202444582 @default.
- W1904920106 hasConcept C2524010 @default.
- W1904920106 hasConcept C33923547 @default.
- W1904920106 hasConcept C42448751 @default.
- W1904920106 hasConceptScore W1904920106C109385661 @default.
- W1904920106 hasConceptScore W1904920106C12089564 @default.
- W1904920106 hasConceptScore W1904920106C12520029 @default.
- W1904920106 hasConceptScore W1904920106C127299034 @default.
- W1904920106 hasConceptScore W1904920106C134306372 @default.
- W1904920106 hasConceptScore W1904920106C139941754 @default.
- W1904920106 hasConceptScore W1904920106C1432948 @default.
- W1904920106 hasConceptScore W1904920106C151300846 @default.
- W1904920106 hasConceptScore W1904920106C187915474 @default.
- W1904920106 hasConceptScore W1904920106C195065555 @default.
- W1904920106 hasConceptScore W1904920106C202444582 @default.
- W1904920106 hasConceptScore W1904920106C2524010 @default.
- W1904920106 hasConceptScore W1904920106C33923547 @default.
- W1904920106 hasConceptScore W1904920106C42448751 @default.
- W1904920106 hasLocation W19049201061 @default.
- W1904920106 hasLocation W19049201062 @default.
- W1904920106 hasLocation W19049201063 @default.
- W1904920106 hasOpenAccess W1904920106 @default.
- W1904920106 hasPrimaryLocation W19049201061 @default.
- W1904920106 hasRelatedWork W1491019474 @default.
- W1904920106 hasRelatedWork W155934641 @default.
- W1904920106 hasRelatedWork W1587447966 @default.
- W1904920106 hasRelatedWork W1762316930 @default.
- W1904920106 hasRelatedWork W1983894121 @default.
- W1904920106 hasRelatedWork W1995245017 @default.
- W1904920106 hasRelatedWork W2019558169 @default.
- W1904920106 hasRelatedWork W2029812805 @default.
- W1904920106 hasRelatedWork W2059728142 @default.
- W1904920106 hasRelatedWork W2089465567 @default.
- W1904920106 hasRelatedWork W2095410135 @default.
- W1904920106 hasRelatedWork W2103883449 @default.
- W1904920106 hasRelatedWork W2156736458 @default.
- W1904920106 hasRelatedWork W2280331994 @default.
- W1904920106 hasRelatedWork W2381670531 @default.
- W1904920106 hasRelatedWork W2567417407 @default.
- W1904920106 hasRelatedWork W2950002876 @default.
- W1904920106 hasRelatedWork W3187477437 @default.
- W1904920106 hasRelatedWork W437713939 @default.
- W1904920106 hasRelatedWork W647841399 @default.
- W1904920106 isParatext "false" @default.
- W1904920106 isRetracted "false" @default.
- W1904920106 magId "1904920106" @default.
- W1904920106 workType "book-chapter" @default.