Matches in SemOpenAlex for { <https://semopenalex.org/work/W1905523106> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1905523106 abstract "Analysis of long-term electroencephalogram signals (EEG) is an important tool to clinically confirm the diagnosis of epilepsy. The characteristic electrographic events that represent epilepsy in the analysis of EEG are called epileptiform events (spikes and sharp waves). The process of EEG record analysis is performed by highly trained specialists, which identify the spikes and sharp waves throughout EEG records with minimum duration of 24 hours. Since epileptiform events have typical amplitude around 200µV and duration between 20 and 200ms the analysis of the EEG records is considered very time-consuming and tiring for the experts. Several studies for automatic detection and classification of epileptiform events have been proposed but there is still no system with widespread use and a performance that meets the needs of the specialists. The Self-Organizing Maps of Kohonen (SOM) are an unsupervised neural network algorithm that consists of two layers of neurons that has been successfully used in a wide variety of applications. The objective of this study is to test the feasibility of using Self-Organizing Maps of Kohonen for automatic classification of epileptiform events and non-epileptiform events in EEG signals. Different maps of Kohonen were developed and tested. After simulations, the results were evaluated according to classical performance indexes and the best network achieved 98.7% sensitivity, 91.9% specificity, 90.08% selectivity and 94.8% efficiency. Comparing the results of other SOM studies we obtained sensitivity 9–12% higher and selectivity 12–39% higher than the analyzed studies. Furthermore, a comparison with the results of a previous study that uses the same EEG signal database showed that the overall efficiency was quite similar (only 1% lower)." @default.
- W1905523106 created "2016-06-24" @default.
- W1905523106 creator A5027192682 @default.
- W1905523106 creator A5044831157 @default.
- W1905523106 creator A5084909499 @default.
- W1905523106 date "2015-05-01" @default.
- W1905523106 modified "2023-09-23" @default.
- W1905523106 title "Classification of epileptiform events in EEG signals using neural classifier based on SOM" @default.
- W1905523106 cites W1973547962 @default.
- W1905523106 cites W1989296422 @default.
- W1905523106 cites W1990517717 @default.
- W1905523106 cites W2048822509 @default.
- W1905523106 cites W2095312066 @default.
- W1905523106 cites W2130947713 @default.
- W1905523106 cites W2135076666 @default.
- W1905523106 cites W2142569723 @default.
- W1905523106 cites W2164918965 @default.
- W1905523106 cites W2483598975 @default.
- W1905523106 doi "https://doi.org/10.1109/iceeict.2015.7307340" @default.
- W1905523106 hasPublicationYear "2015" @default.
- W1905523106 type Work @default.
- W1905523106 sameAs 1905523106 @default.
- W1905523106 citedByCount "4" @default.
- W1905523106 countsByYear W19055231062019 @default.
- W1905523106 countsByYear W19055231062022 @default.
- W1905523106 countsByYear W19055231062023 @default.
- W1905523106 crossrefType "proceedings-article" @default.
- W1905523106 hasAuthorship W1905523106A5027192682 @default.
- W1905523106 hasAuthorship W1905523106A5044831157 @default.
- W1905523106 hasAuthorship W1905523106A5084909499 @default.
- W1905523106 hasConcept C153180895 @default.
- W1905523106 hasConcept C154945302 @default.
- W1905523106 hasConcept C15744967 @default.
- W1905523106 hasConcept C169760540 @default.
- W1905523106 hasConcept C41008148 @default.
- W1905523106 hasConcept C50644808 @default.
- W1905523106 hasConcept C522805319 @default.
- W1905523106 hasConcept C95623464 @default.
- W1905523106 hasConceptScore W1905523106C153180895 @default.
- W1905523106 hasConceptScore W1905523106C154945302 @default.
- W1905523106 hasConceptScore W1905523106C15744967 @default.
- W1905523106 hasConceptScore W1905523106C169760540 @default.
- W1905523106 hasConceptScore W1905523106C41008148 @default.
- W1905523106 hasConceptScore W1905523106C50644808 @default.
- W1905523106 hasConceptScore W1905523106C522805319 @default.
- W1905523106 hasConceptScore W1905523106C95623464 @default.
- W1905523106 hasLocation W19055231061 @default.
- W1905523106 hasOpenAccess W1905523106 @default.
- W1905523106 hasPrimaryLocation W19055231061 @default.
- W1905523106 hasRelatedWork W2001652754 @default.
- W1905523106 hasRelatedWork W2167582322 @default.
- W1905523106 hasRelatedWork W2379065761 @default.
- W1905523106 hasRelatedWork W2549006548 @default.
- W1905523106 hasRelatedWork W2784352036 @default.
- W1905523106 hasRelatedWork W2807311372 @default.
- W1905523106 hasRelatedWork W2972035100 @default.
- W1905523106 hasRelatedWork W3043252291 @default.
- W1905523106 hasRelatedWork W4214932115 @default.
- W1905523106 hasRelatedWork W4313203779 @default.
- W1905523106 isParatext "false" @default.
- W1905523106 isRetracted "false" @default.
- W1905523106 magId "1905523106" @default.
- W1905523106 workType "article" @default.