Matches in SemOpenAlex for { <https://semopenalex.org/work/W190659027> ?p ?o ?g. }
- W190659027 abstract "Cell migration is a behaviour critical to many key biological effects, including wound healing, cancerous cell invasion and morphogenesis, the development of an organism from an embryo.However, given that each of these situations is distinctly different and cells are extremely complicated biological objects, interest lies in more basic experiments which seek to remove conflating factors and present a less complex environment within which cell migration can be experimentally examined. These include in vitro studies like the scratch assay or circle migration assay, and ex vivo studies like the colonisation of the hindgut by neural crest cells. The reduced complexity of these experiments also makes them much more enticing as problems to mathematically model, like done here.The primary goal of the mathematical models used in this thesis is to shed light on which cellular behaviours work to generate the travelling waves of invasion observed in these experiments, and to explore how variations in these behaviours can potentially predict differences in this invasive pattern which are experimentally observed when cell types or chemical environment are changed. Relevant literature has already identified the difficulty of distinguishing between these behaviours when using traditional mathematical biology techniques operating on a macroscopic scale, and so here a sophisticated individual-cell-level model, an extension of the Cellular Potts Model (CPM), is been constructed and used to model a scratch assay experiment.This model includes a novel mechanism for dealing with cell proliferations that allowed for the differing properties of quiescent and proliferative cells to be implemented into their behaviour. This model is considered both for its predictive power and used to make comparisons with the travelling waves which result in more traditional macroscopic simulations.These comparisons demonstrate a surprising amount of agreement between the two modelling frameworks, and suggest further novel modifications to the CPM that would allow it to better model cell migration. Considerations of the model’s behaviour are used to argue that the dominant effect governing cell migration (random motility or signal-driven taxis) likely depends on the sort of invasion demonstrated by cells, as easily seen by microscopic photography.Additionally, a scratch assay simulated on a non-homogeneous domain consisting of a ’fast’ and ’slow’ region is also used to further differentiate between these different potential cell motility behaviours. A heterogeneous domain is a novel situation which has not been considered mathematically in this context, nor has it been constructed experimentally to the best of the candidate’s knowledge. Thus this problem serves as a thought experiment used to test the conclusions arising from the simulations on homogeneous domains, and to suggest what might be observed should this non-homogeneous assay situation be experimentally realised.Non-intuitive cell invasion patterns are predicted for diffusely-invading cells which respond to a cell-consumed signal or nutrient, contrasted with rather expected behaviour in the case of random-motility-driven invasion. The potential experimental observation of these behaviours is demonstrated by the individual-cell-level model used in this thesis, which does agree with the PDE model in predicting these unexpected invasion patterns. In the interest of examining such a case of a non-homogeneous domain experimentally, some brief suggestion is made as to how this could be achieved." @default.
- W190659027 created "2016-06-24" @default.
- W190659027 creator A5068185600 @default.
- W190659027 date "2013-01-01" @default.
- W190659027 modified "2023-09-26" @default.
- W190659027 title "Cell migration and proliferation on homogeneous and non-homogeneous domains : modelling on the scale of individuals and populations" @default.
- W190659027 cites W1217515891 @default.
- W190659027 cites W139632791 @default.
- W190659027 cites W1498627683 @default.
- W190659027 cites W1515003336 @default.
- W190659027 cites W1517998622 @default.
- W190659027 cites W1534983138 @default.
- W190659027 cites W154646596 @default.
- W190659027 cites W1546959115 @default.
- W190659027 cites W1555627060 @default.
- W190659027 cites W1591593323 @default.
- W190659027 cites W1592036347 @default.
- W190659027 cites W1674445445 @default.
- W190659027 cites W1843268734 @default.
- W190659027 cites W1891752767 @default.
- W190659027 cites W1950839866 @default.
- W190659027 cites W1964755274 @default.
- W190659027 cites W1969974695 @default.
- W190659027 cites W1970503891 @default.
- W190659027 cites W1970613379 @default.
- W190659027 cites W1970674026 @default.
- W190659027 cites W1972135589 @default.
- W190659027 cites W1972214441 @default.
- W190659027 cites W1972861820 @default.
- W190659027 cites W1973188249 @default.
- W190659027 cites W1975706278 @default.
- W190659027 cites W1978741909 @default.
- W190659027 cites W1978941072 @default.
- W190659027 cites W1980661496 @default.
- W190659027 cites W1981047637 @default.
- W190659027 cites W1981659355 @default.
- W190659027 cites W1982088462 @default.
- W190659027 cites W1983690504 @default.
- W190659027 cites W1986338995 @default.
- W190659027 cites W1987583518 @default.
- W190659027 cites W1987712445 @default.
- W190659027 cites W1988374374 @default.
- W190659027 cites W1988893861 @default.
- W190659027 cites W1989574300 @default.
- W190659027 cites W1990340775 @default.
- W190659027 cites W1994902531 @default.
- W190659027 cites W1995884908 @default.
- W190659027 cites W1997474028 @default.
- W190659027 cites W1997574957 @default.
- W190659027 cites W1998830482 @default.
- W190659027 cites W2000236262 @default.
- W190659027 cites W2001497773 @default.
- W190659027 cites W2002333819 @default.
- W190659027 cites W2002785668 @default.
- W190659027 cites W2006338567 @default.
- W190659027 cites W2007368235 @default.
- W190659027 cites W2007499469 @default.
- W190659027 cites W2008745362 @default.
- W190659027 cites W2009668940 @default.
- W190659027 cites W2011804741 @default.
- W190659027 cites W2014786311 @default.
- W190659027 cites W2017019197 @default.
- W190659027 cites W2017501116 @default.
- W190659027 cites W2018724078 @default.
- W190659027 cites W2020152720 @default.
- W190659027 cites W2021505095 @default.
- W190659027 cites W2022585744 @default.
- W190659027 cites W2023884962 @default.
- W190659027 cites W2024813407 @default.
- W190659027 cites W2025478286 @default.
- W190659027 cites W2026170044 @default.
- W190659027 cites W2026979923 @default.
- W190659027 cites W2027091123 @default.
- W190659027 cites W2029188368 @default.
- W190659027 cites W2030955941 @default.
- W190659027 cites W2031171101 @default.
- W190659027 cites W2034226301 @default.
- W190659027 cites W2034239465 @default.
- W190659027 cites W2034455358 @default.
- W190659027 cites W2034828918 @default.
- W190659027 cites W2035159044 @default.
- W190659027 cites W2035265193 @default.
- W190659027 cites W2035409069 @default.
- W190659027 cites W2035681587 @default.
- W190659027 cites W2036016400 @default.
- W190659027 cites W2037375326 @default.
- W190659027 cites W2040849676 @default.
- W190659027 cites W2041619208 @default.
- W190659027 cites W2042892258 @default.
- W190659027 cites W2044019708 @default.
- W190659027 cites W2047173345 @default.
- W190659027 cites W2047380378 @default.
- W190659027 cites W2047473320 @default.
- W190659027 cites W2051541834 @default.
- W190659027 cites W2053279891 @default.
- W190659027 cites W2053993560 @default.
- W190659027 cites W2054197744 @default.
- W190659027 cites W2054228349 @default.
- W190659027 cites W2055661993 @default.
- W190659027 cites W2056760934 @default.