Matches in SemOpenAlex for { <https://semopenalex.org/work/W1906703543> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1906703543 abstract "In the last couple of years The Institute of Cybernetics at NTNU, Norway, has based its research on the SVEN work carried out in Sweden in the late 1970’s. The SVEN hand was an on/off-controlled upper limb prosthesis based on electromyographic (EMG) signals. This master thesis is a part of the renewed and continuing research. This study will try to identify signal features that are beneficial in a proportional control of a multi-function upper limb prosthesis. The intent is to identify a set of signal features that could be implemented in a practical proportional control system to enhance the movement functions of the prosthesis such that it more closely mimic the movements of a normal upper limb. The data set used in this paper consist of EMG signals and VICON angle data recorded by Fougner (2007). A short explanation will be given on how to acquire such data. A brief introduction on feature selection defines the properties of a wrapper and filter approach in search for a feature subset. Wavelets properties are explained and two wavelet techniques are used in order to obtain more information from the EMG signal in addition to existing features. From this, we search for a subset of features that will let us use a mapping function that estimates a correct motion with respect to the features fed to it. The Cosine Similarity Transform (CST) and the Correlation coefficient (CORR) will in addition to RMSE be investigated in order to find an optimal performance indicator. With a good and reliable indicator we may find a suitable subset. EWC-WAVE were found to be the best subset according to both CST and RMSE. Based upon the information obtained from each performance indicator, it is suggested that CST should be carried out as a measure of accuracy on how to map data in the future. There are still unsolved problems. Some of the angles we tried to estimate with a neural network suffered and produced non-informative data. This indicate that one should add more hidden nodes to a neural network when more features are used as input. We have obtained indications that we do need to combine feature subsets in order to obtain higher accuracy of the estimated signal. It is proposed that a post-processing technique should be developed and used subsequent to the pattern recognition methods in order to achieve a signal that better reflects the estimation and may be used as a control signal for a prosthesis. Hopefully will these findings help improve future work to achieve an enhanced proportional control for a real prosthesis." @default.
- W1906703543 created "2016-06-24" @default.
- W1906703543 creator A5006625852 @default.
- W1906703543 date "2009-01-01" @default.
- W1906703543 modified "2023-09-24" @default.
- W1906703543 title "Myoelectric signal features for upper limb prostheses" @default.
- W1906703543 cites W1489213177 @default.
- W1906703543 cites W1555512781 @default.
- W1906703543 cites W1559923427 @default.
- W1906703543 cites W1604548007 @default.
- W1906703543 cites W2040884411 @default.
- W1906703543 cites W2113998107 @default.
- W1906703543 cites W2120422653 @default.
- W1906703543 cites W2153043277 @default.
- W1906703543 cites W2913283985 @default.
- W1906703543 cites W95676625 @default.
- W1906703543 hasPublicationYear "2009" @default.
- W1906703543 type Work @default.
- W1906703543 sameAs 1906703543 @default.
- W1906703543 citedByCount "2" @default.
- W1906703543 countsByYear W19067035432015 @default.
- W1906703543 countsByYear W19067035432020 @default.
- W1906703543 crossrefType "dissertation" @default.
- W1906703543 hasAuthorship W1906703543A5006625852 @default.
- W1906703543 hasConcept C106131492 @default.
- W1906703543 hasConcept C115286129 @default.
- W1906703543 hasConcept C138885662 @default.
- W1906703543 hasConcept C14036430 @default.
- W1906703543 hasConcept C153180895 @default.
- W1906703543 hasConcept C154945302 @default.
- W1906703543 hasConcept C177264268 @default.
- W1906703543 hasConcept C199360897 @default.
- W1906703543 hasConcept C2776401178 @default.
- W1906703543 hasConcept C2779843651 @default.
- W1906703543 hasConcept C28490314 @default.
- W1906703543 hasConcept C31972630 @default.
- W1906703543 hasConcept C41008148 @default.
- W1906703543 hasConcept C41895202 @default.
- W1906703543 hasConcept C47432892 @default.
- W1906703543 hasConcept C78458016 @default.
- W1906703543 hasConcept C86803240 @default.
- W1906703543 hasConceptScore W1906703543C106131492 @default.
- W1906703543 hasConceptScore W1906703543C115286129 @default.
- W1906703543 hasConceptScore W1906703543C138885662 @default.
- W1906703543 hasConceptScore W1906703543C14036430 @default.
- W1906703543 hasConceptScore W1906703543C153180895 @default.
- W1906703543 hasConceptScore W1906703543C154945302 @default.
- W1906703543 hasConceptScore W1906703543C177264268 @default.
- W1906703543 hasConceptScore W1906703543C199360897 @default.
- W1906703543 hasConceptScore W1906703543C2776401178 @default.
- W1906703543 hasConceptScore W1906703543C2779843651 @default.
- W1906703543 hasConceptScore W1906703543C28490314 @default.
- W1906703543 hasConceptScore W1906703543C31972630 @default.
- W1906703543 hasConceptScore W1906703543C41008148 @default.
- W1906703543 hasConceptScore W1906703543C41895202 @default.
- W1906703543 hasConceptScore W1906703543C47432892 @default.
- W1906703543 hasConceptScore W1906703543C78458016 @default.
- W1906703543 hasConceptScore W1906703543C86803240 @default.
- W1906703543 hasLocation W19067035431 @default.
- W1906703543 hasOpenAccess W1906703543 @default.
- W1906703543 hasPrimaryLocation W19067035431 @default.
- W1906703543 hasRelatedWork W160102711 @default.
- W1906703543 hasRelatedWork W1971917204 @default.
- W1906703543 hasRelatedWork W1983021805 @default.
- W1906703543 hasRelatedWork W2000422956 @default.
- W1906703543 hasRelatedWork W2014069917 @default.
- W1906703543 hasRelatedWork W2031200598 @default.
- W1906703543 hasRelatedWork W2108345769 @default.
- W1906703543 hasRelatedWork W2128233502 @default.
- W1906703543 hasRelatedWork W2268131909 @default.
- W1906703543 hasRelatedWork W2549293296 @default.
- W1906703543 hasRelatedWork W2754911140 @default.
- W1906703543 hasRelatedWork W2791012243 @default.
- W1906703543 hasRelatedWork W2800372154 @default.
- W1906703543 hasRelatedWork W2922365824 @default.
- W1906703543 hasRelatedWork W3081904072 @default.
- W1906703543 hasRelatedWork W3135568900 @default.
- W1906703543 hasRelatedWork W3139585756 @default.
- W1906703543 hasRelatedWork W3159179477 @default.
- W1906703543 hasRelatedWork W395547207 @default.
- W1906703543 hasRelatedWork W2122144904 @default.
- W1906703543 isParatext "false" @default.
- W1906703543 isRetracted "false" @default.
- W1906703543 magId "1906703543" @default.
- W1906703543 workType "dissertation" @default.