Matches in SemOpenAlex for { <https://semopenalex.org/work/W1908656564> ?p ?o ?g. }
- W1908656564 endingPage "500" @default.
- W1908656564 startingPage "492" @default.
- W1908656564 abstract "This paper aims to compare the performance of three different artificial neural network techniques for tourist demand forecasting: a multi-layer perceptron, a radial basis function and an Elman network. We find that multi-layer perceptron and radial basis function models outperform Elman networks. We repeated the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results. We find that for higher memories, the forecasting performance obtained for longer horizons improves, suggesting the importance of increasing the dimensionality for long-term forecasting. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W1908656564 created "2016-06-24" @default.
- W1908656564 creator A5000898995 @default.
- W1908656564 creator A5012706591 @default.
- W1908656564 creator A5045318229 @default.
- W1908656564 date "2014-07-21" @default.
- W1908656564 modified "2023-09-29" @default.
- W1908656564 title "Tourism Demand Forecasting with Neural Network Models: Different Ways of Treating Information" @default.
- W1908656564 cites W1498436455 @default.
- W1908656564 cites W1586335931 @default.
- W1908656564 cites W1967495926 @default.
- W1908656564 cites W1968975103 @default.
- W1908656564 cites W1970436524 @default.
- W1908656564 cites W1977127120 @default.
- W1908656564 cites W1992347171 @default.
- W1908656564 cites W1999007279 @default.
- W1908656564 cites W1999984873 @default.
- W1908656564 cites W2006926252 @default.
- W1908656564 cites W2015122449 @default.
- W1908656564 cites W2018466646 @default.
- W1908656564 cites W2020832745 @default.
- W1908656564 cites W2022349803 @default.
- W1908656564 cites W2025796800 @default.
- W1908656564 cites W2043365124 @default.
- W1908656564 cites W2045581228 @default.
- W1908656564 cites W2060173250 @default.
- W1908656564 cites W2067284569 @default.
- W1908656564 cites W2086691529 @default.
- W1908656564 cites W2087443170 @default.
- W1908656564 cites W2110485445 @default.
- W1908656564 cites W2117812871 @default.
- W1908656564 cites W2126858141 @default.
- W1908656564 cites W2129214104 @default.
- W1908656564 cites W2134961733 @default.
- W1908656564 cites W2163699566 @default.
- W1908656564 cites W2504704373 @default.
- W1908656564 cites W2764769393 @default.
- W1908656564 cites W2764773363 @default.
- W1908656564 cites W3126014112 @default.
- W1908656564 doi "https://doi.org/10.1002/jtr.2016" @default.
- W1908656564 hasPublicationYear "2014" @default.
- W1908656564 type Work @default.
- W1908656564 sameAs 1908656564 @default.
- W1908656564 citedByCount "77" @default.
- W1908656564 countsByYear W19086565642015 @default.
- W1908656564 countsByYear W19086565642016 @default.
- W1908656564 countsByYear W19086565642017 @default.
- W1908656564 countsByYear W19086565642018 @default.
- W1908656564 countsByYear W19086565642019 @default.
- W1908656564 countsByYear W19086565642020 @default.
- W1908656564 countsByYear W19086565642021 @default.
- W1908656564 countsByYear W19086565642022 @default.
- W1908656564 countsByYear W19086565642023 @default.
- W1908656564 crossrefType "journal-article" @default.
- W1908656564 hasAuthorship W1908656564A5000898995 @default.
- W1908656564 hasAuthorship W1908656564A5012706591 @default.
- W1908656564 hasAuthorship W1908656564A5045318229 @default.
- W1908656564 hasBestOaLocation W19086565642 @default.
- W1908656564 hasConcept C111030470 @default.
- W1908656564 hasConcept C111919701 @default.
- W1908656564 hasConcept C114614502 @default.
- W1908656564 hasConcept C119857082 @default.
- W1908656564 hasConcept C12426560 @default.
- W1908656564 hasConcept C14036430 @default.
- W1908656564 hasConcept C154945302 @default.
- W1908656564 hasConcept C166957645 @default.
- W1908656564 hasConcept C179717631 @default.
- W1908656564 hasConcept C18918823 @default.
- W1908656564 hasConcept C193809577 @default.
- W1908656564 hasConcept C199845137 @default.
- W1908656564 hasConcept C205649164 @default.
- W1908656564 hasConcept C2524010 @default.
- W1908656564 hasConcept C33923547 @default.
- W1908656564 hasConcept C41008148 @default.
- W1908656564 hasConcept C42475967 @default.
- W1908656564 hasConcept C50644808 @default.
- W1908656564 hasConcept C60908668 @default.
- W1908656564 hasConcept C78458016 @default.
- W1908656564 hasConcept C86803240 @default.
- W1908656564 hasConcept C87619178 @default.
- W1908656564 hasConceptScore W1908656564C111030470 @default.
- W1908656564 hasConceptScore W1908656564C111919701 @default.
- W1908656564 hasConceptScore W1908656564C114614502 @default.
- W1908656564 hasConceptScore W1908656564C119857082 @default.
- W1908656564 hasConceptScore W1908656564C12426560 @default.
- W1908656564 hasConceptScore W1908656564C14036430 @default.
- W1908656564 hasConceptScore W1908656564C154945302 @default.
- W1908656564 hasConceptScore W1908656564C166957645 @default.
- W1908656564 hasConceptScore W1908656564C179717631 @default.
- W1908656564 hasConceptScore W1908656564C18918823 @default.
- W1908656564 hasConceptScore W1908656564C193809577 @default.
- W1908656564 hasConceptScore W1908656564C199845137 @default.
- W1908656564 hasConceptScore W1908656564C205649164 @default.
- W1908656564 hasConceptScore W1908656564C2524010 @default.
- W1908656564 hasConceptScore W1908656564C33923547 @default.
- W1908656564 hasConceptScore W1908656564C41008148 @default.
- W1908656564 hasConceptScore W1908656564C42475967 @default.
- W1908656564 hasConceptScore W1908656564C50644808 @default.