Matches in SemOpenAlex for { <https://semopenalex.org/work/W1909283576> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1909283576 abstract "A crack in a thin plate reflects ultrasonic waves; therefore, it is reasonable to determine the location of the crack by measuring the reflected waves. The problem of locating the crack can be reformulated in purely geometric terms. Previously, time-consuming iterative numerical methods were used to solve the resulting geometric problem. In this paper, we show that explicit (and fast to compute) formulas can be used instead. Formulation of the engineering problem. One of the most common problems in aging aircraft structures is the presence of cracks. These cracks are often not visible because they are hidden inside the structure or covered with paint. It is therefore necessary to use techniques of non-destructive testing (NDT) such as ultrasonic Lamb waves. Lamb waves in thin plates are very convenient in detecting cracks in large-scale structures because these waves can propagate long distances and thus, can help us explore large portions of the plate; see, e.g., (Viktorov 1967). In a faultless plate, a Lamb wave can travel long distances without dispersion or reflection. Defects reflect and scatter these waves; as a result, the very presence of a reflected wave indicates a defect. It is reasonable to determine the location of the crack by measuring the reflected waves. Reduction to a geometric problem. To locate the crack, we generate a wave pulse that is sent, via a transmitter T, to the plate. This pulse propagates through the plate and reaches a sensor S. In a faultless plate, the only signal we receive at S is a signal that goes directly from T to S; this signal is received at a time t1 = t0 + d0/v, where t0 is the moment of time when the original signal was sent, d0 is the distance between T and S, and v is the (known) velocity with which the Lamb waves propagate. In a plate with defects, in addition to this direct signal, we also observe the signal reflected from a defect; this reflected signal arrives at S at a moment t2 = t0 + d/v, where d is the length of the path TFS = TF + FS from T to S via a reflecting point F on the fault. Since we measure t2 and we know the values t0 and v, we can therefore determine the distance d as v · (t2 − t0). If we move the sensor a little bit, to a new location S′ at a small distance s from the old one, then the reflection point shifts a little bit to a new point F′, and the path length changes from d to a new value d′. On a large scale, a crack is usually reasonably smooth. Therefore, between the two close points F and F′, the shape of a crack can be approximated by a straight line segment. Thus, we arrive at the following geometric problem (see Fig. 1): • We know the location of three points T, S, and S′ on the plane. • We know that there is a segment FF′ of a straight line ` on the same plane. • We know the length d of the two-line-segment path that starts at T, gets reflected by ` at a point F ∈ `, and ends at S. • We also know the length d′ of the two-line-segment path that starts at T, gets reflected by ` at a point F′ ∈ `, and ends at S′. • Our objective is to locate the points F and F′. How this problem was solved before. For the (unknown) reflection point F, we know the sum TF + FS of the distances from two known points: T and S. It is a known geometrical fact that for any given two points T and S, the set of all points F with a given sum TF + FS is an ellipse. Due to Snell’s law describing wave reflection, the angle between the incoming wave and the crack must be the same as between the crack and the outcoming wave." @default.
- W1909283576 created "2016-06-24" @default.
- W1909283576 creator A5050575771 @default.
- W1909283576 creator A5061275811 @default.
- W1909283576 creator A5062086788 @default.
- W1909283576 creator A5064337292 @default.
- W1909283576 date "2003-01-01" @default.
- W1909283576 modified "2023-09-27" @default.
- W1909283576 title "Detecting Cracks in Thin Plates by Using Lamb Wave Scanning: Geometric Approach" @default.
- W1909283576 cites W143669975 @default.
- W1909283576 cites W1589397182 @default.
- W1909283576 cites W1971430950 @default.
- W1909283576 cites W2122331848 @default.
- W1909283576 hasPublicationYear "2003" @default.
- W1909283576 type Work @default.
- W1909283576 sameAs 1909283576 @default.
- W1909283576 citedByCount "0" @default.
- W1909283576 crossrefType "journal-article" @default.
- W1909283576 hasAuthorship W1909283576A5050575771 @default.
- W1909283576 hasAuthorship W1909283576A5061275811 @default.
- W1909283576 hasAuthorship W1909283576A5062086788 @default.
- W1909283576 hasAuthorship W1909283576A5064337292 @default.
- W1909283576 hasConcept C120665830 @default.
- W1909283576 hasConcept C121332964 @default.
- W1909283576 hasConcept C139730468 @default.
- W1909283576 hasConcept C142358356 @default.
- W1909283576 hasConcept C143351421 @default.
- W1909283576 hasConcept C177562468 @default.
- W1909283576 hasConcept C199360897 @default.
- W1909283576 hasConcept C24890656 @default.
- W1909283576 hasConcept C2779843651 @default.
- W1909283576 hasConcept C2780167933 @default.
- W1909283576 hasConcept C41008148 @default.
- W1909283576 hasConcept C44886760 @default.
- W1909283576 hasConcept C56529433 @default.
- W1909283576 hasConcept C62520636 @default.
- W1909283576 hasConcept C65682993 @default.
- W1909283576 hasConcept C81288441 @default.
- W1909283576 hasConcept C94915269 @default.
- W1909283576 hasConceptScore W1909283576C120665830 @default.
- W1909283576 hasConceptScore W1909283576C121332964 @default.
- W1909283576 hasConceptScore W1909283576C139730468 @default.
- W1909283576 hasConceptScore W1909283576C142358356 @default.
- W1909283576 hasConceptScore W1909283576C143351421 @default.
- W1909283576 hasConceptScore W1909283576C177562468 @default.
- W1909283576 hasConceptScore W1909283576C199360897 @default.
- W1909283576 hasConceptScore W1909283576C24890656 @default.
- W1909283576 hasConceptScore W1909283576C2779843651 @default.
- W1909283576 hasConceptScore W1909283576C2780167933 @default.
- W1909283576 hasConceptScore W1909283576C41008148 @default.
- W1909283576 hasConceptScore W1909283576C44886760 @default.
- W1909283576 hasConceptScore W1909283576C56529433 @default.
- W1909283576 hasConceptScore W1909283576C62520636 @default.
- W1909283576 hasConceptScore W1909283576C65682993 @default.
- W1909283576 hasConceptScore W1909283576C81288441 @default.
- W1909283576 hasConceptScore W1909283576C94915269 @default.
- W1909283576 hasLocation W19092835761 @default.
- W1909283576 hasOpenAccess W1909283576 @default.
- W1909283576 hasPrimaryLocation W19092835761 @default.
- W1909283576 hasRelatedWork W1979655296 @default.
- W1909283576 hasRelatedWork W1998542064 @default.
- W1909283576 hasRelatedWork W2009929698 @default.
- W1909283576 hasRelatedWork W2032729165 @default.
- W1909283576 hasRelatedWork W2099059961 @default.
- W1909283576 hasRelatedWork W2140248388 @default.
- W1909283576 hasRelatedWork W2142255096 @default.
- W1909283576 hasRelatedWork W2152240292 @default.
- W1909283576 hasRelatedWork W2152509755 @default.
- W1909283576 hasRelatedWork W2157604082 @default.
- W1909283576 hasRelatedWork W2164772822 @default.
- W1909283576 hasRelatedWork W2167700887 @default.
- W1909283576 hasRelatedWork W2184057095 @default.
- W1909283576 hasRelatedWork W2269903384 @default.
- W1909283576 hasRelatedWork W2278757077 @default.
- W1909283576 hasRelatedWork W2287371835 @default.
- W1909283576 hasRelatedWork W2333539302 @default.
- W1909283576 hasRelatedWork W2471976809 @default.
- W1909283576 hasRelatedWork W2740793435 @default.
- W1909283576 hasRelatedWork W2940704778 @default.
- W1909283576 isParatext "false" @default.
- W1909283576 isRetracted "false" @default.
- W1909283576 magId "1909283576" @default.
- W1909283576 workType "article" @default.