Matches in SemOpenAlex for { <https://semopenalex.org/work/W1911545942> ?p ?o ?g. }
- W1911545942 abstract "[1] Discrete fracture network (DFN) and stochastic continuum (SC) are two common modeling approaches used for simulating fluid flow and solute transport in fractured media. Fracture continuum approaches combine the merits of each approach; details of the fracture network are preserved, and a computationally efficient grid is utilized for the solution of fluid flow by assigning a conductivity contrast between the grid cells representing the rock matrix and those representing fractures. In this paper, we propose a fracture continuum approach for mapping individual fractures onto a finite-difference grid as conductivity fields. We focus on several issues that are associated with this approach, such as enhanced connectivity between fractures that would otherwise not be in connection in a DFN simulation and the influence of grid cell size. To addresses these issues, both DFN and the proposed approach are used to solve for fluid flow through two-dimensional, randomly generated fracture networks in a steady-state, single-phase flow system. The DFN flow solution is used as a metric to evaluate the robustness of the method in translating discrete fractures onto grid cell conductivities on four different regularly spaced grids: 1 × 1 m, 2 × 2 m, 5 × 5 m, and 10 × 10 m. Two correction factors are introduced to ensure equivalence between the total flow of the grid and the original fracture network. The first is dependent on the fracture alignment with the grid and is set to account for the difference between the length of the flow path on the grid and that of the fracture. The other correction is applied for areas in the grid with high fracture density and accounts for the artificial degree of connectivity that exists on the grid but not in the DFN. Fifteen different cases are studied to evaluate the effect of fracture statistics on the results of the proposed approach and by taking average results of 100 realizations in each case in a stochastic Monte Carlo framework. The flow equation is solved for the DFN, and total flow is obtained. The flow is also solved separately for the four-grid resolution levels, and comparisons between the DFN and the grid total flows are made for the different cases and the different grid resolution levels. The approach performed relatively well in all cases for the fine-grid resolution, but an overestimation of grid flow is observed in the coarse-grid resolution, especially for cases wherein the network connectivity is controlled by small fractures. This overestimation shows minor variation from one realization to another within the same case. This allowed us to develop an approach that depends on solving limited number of DFN simulations to obtain this overestimation factor. Results indicate that the proposed approach provides improvements over existing approaches and has a potential to provide a link between DFN and SC models." @default.
- W1911545942 created "2016-06-24" @default.
- W1911545942 creator A5011509941 @default.
- W1911545942 creator A5077116438 @default.
- W1911545942 creator A5079683964 @default.
- W1911545942 creator A5091586373 @default.
- W1911545942 date "2008-08-01" @default.
- W1911545942 modified "2023-09-27" @default.
- W1911545942 title "On mapping fracture networks onto continuum" @default.
- W1911545942 cites W1590644696 @default.
- W1911545942 cites W1621149596 @default.
- W1911545942 cites W1655546622 @default.
- W1911545942 cites W1665316539 @default.
- W1911545942 cites W1679030178 @default.
- W1911545942 cites W1796959241 @default.
- W1911545942 cites W182611154 @default.
- W1911545942 cites W1966158133 @default.
- W1911545942 cites W1970588739 @default.
- W1911545942 cites W1971359494 @default.
- W1911545942 cites W1972142370 @default.
- W1911545942 cites W1978305759 @default.
- W1911545942 cites W1982964755 @default.
- W1911545942 cites W1983067651 @default.
- W1911545942 cites W1996613237 @default.
- W1911545942 cites W2006034514 @default.
- W1911545942 cites W2007142699 @default.
- W1911545942 cites W2007737300 @default.
- W1911545942 cites W2008981917 @default.
- W1911545942 cites W2015998173 @default.
- W1911545942 cites W2016753488 @default.
- W1911545942 cites W2024335963 @default.
- W1911545942 cites W2027568360 @default.
- W1911545942 cites W2048569709 @default.
- W1911545942 cites W2048802840 @default.
- W1911545942 cites W2052324203 @default.
- W1911545942 cites W2056957643 @default.
- W1911545942 cites W2061989892 @default.
- W1911545942 cites W2064625671 @default.
- W1911545942 cites W2065285415 @default.
- W1911545942 cites W2071497472 @default.
- W1911545942 cites W2076517526 @default.
- W1911545942 cites W2077101787 @default.
- W1911545942 cites W2084341227 @default.
- W1911545942 cites W2087221632 @default.
- W1911545942 cites W2087442327 @default.
- W1911545942 cites W2089092253 @default.
- W1911545942 cites W2095800081 @default.
- W1911545942 cites W2101791167 @default.
- W1911545942 cites W2111211921 @default.
- W1911545942 cites W2123673345 @default.
- W1911545942 cites W2125393823 @default.
- W1911545942 cites W2135510348 @default.
- W1911545942 cites W2137635323 @default.
- W1911545942 cites W2145823301 @default.
- W1911545942 cites W2160376598 @default.
- W1911545942 cites W2170558975 @default.
- W1911545942 cites W348887459 @default.
- W1911545942 doi "https://doi.org/10.1029/2007wr006092" @default.
- W1911545942 hasPublicationYear "2008" @default.
- W1911545942 type Work @default.
- W1911545942 sameAs 1911545942 @default.
- W1911545942 citedByCount "57" @default.
- W1911545942 countsByYear W19115459422012 @default.
- W1911545942 countsByYear W19115459422013 @default.
- W1911545942 countsByYear W19115459422014 @default.
- W1911545942 countsByYear W19115459422015 @default.
- W1911545942 countsByYear W19115459422016 @default.
- W1911545942 countsByYear W19115459422017 @default.
- W1911545942 countsByYear W19115459422018 @default.
- W1911545942 countsByYear W19115459422019 @default.
- W1911545942 countsByYear W19115459422020 @default.
- W1911545942 countsByYear W19115459422021 @default.
- W1911545942 countsByYear W19115459422022 @default.
- W1911545942 countsByYear W19115459422023 @default.
- W1911545942 crossrefType "journal-article" @default.
- W1911545942 hasAuthorship W1911545942A5011509941 @default.
- W1911545942 hasAuthorship W1911545942A5077116438 @default.
- W1911545942 hasAuthorship W1911545942A5079683964 @default.
- W1911545942 hasAuthorship W1911545942A5091586373 @default.
- W1911545942 hasBestOaLocation W19115459421 @default.
- W1911545942 hasConcept C104317684 @default.
- W1911545942 hasConcept C121332964 @default.
- W1911545942 hasConcept C126255220 @default.
- W1911545942 hasConcept C127313418 @default.
- W1911545942 hasConcept C185592680 @default.
- W1911545942 hasConcept C187320778 @default.
- W1911545942 hasConcept C187691185 @default.
- W1911545942 hasConcept C2524010 @default.
- W1911545942 hasConcept C2983008078 @default.
- W1911545942 hasConcept C2993709819 @default.
- W1911545942 hasConcept C33923547 @default.
- W1911545942 hasConcept C38349280 @default.
- W1911545942 hasConcept C41008148 @default.
- W1911545942 hasConcept C43369102 @default.
- W1911545942 hasConcept C55493867 @default.
- W1911545942 hasConcept C57879066 @default.
- W1911545942 hasConcept C63479239 @default.
- W1911545942 hasConcept C90278072 @default.
- W1911545942 hasConceptScore W1911545942C104317684 @default.
- W1911545942 hasConceptScore W1911545942C121332964 @default.