Matches in SemOpenAlex for { <https://semopenalex.org/work/W1916682500> ?p ?o ?g. }
- W1916682500 endingPage "91" @default.
- W1916682500 startingPage "71" @default.
- W1916682500 abstract "In this article a number of musical features are extracted from a large musical database and these were subsequently used to build four composer-classification models. The first two models, an if–then rule set and a decision tree, result in an understanding of stylistic differences between Bach, Haydn, and Beethoven. The other two models, a logistic regression model and a support vector machine classifier, are more accurate. The probability of a piece being composed by a certain composer given by the logistic regression model is integrated into the objective function of a previously developed variable neighborhood search algorithm that can generate counterpoint. The result is a system that can generate an endless stream of contrapuntal music with composer-specific characteristics that sounds pleasing to the ear. This system is implemented as an Android app called FuX." @default.
- W1916682500 created "2016-06-24" @default.
- W1916682500 creator A5011294245 @default.
- W1916682500 creator A5051091344 @default.
- W1916682500 creator A5069548004 @default.
- W1916682500 date "2015-09-01" @default.
- W1916682500 modified "2023-10-18" @default.
- W1916682500 title "Classification and Generation of Composer-Specific Music Using Global Feature Models and Variable Neighborhood Search" @default.
- W1916682500 cites W1607425652 @default.
- W1916682500 cites W1965419851 @default.
- W1916682500 cites W1969557815 @default.
- W1916682500 cites W1978458153 @default.
- W1916682500 cites W1980313267 @default.
- W1916682500 cites W1982673570 @default.
- W1916682500 cites W1983119210 @default.
- W1916682500 cites W198744195 @default.
- W1916682500 cites W1988160630 @default.
- W1916682500 cites W2011003805 @default.
- W1916682500 cites W2012661316 @default.
- W1916682500 cites W2013126184 @default.
- W1916682500 cites W2016256370 @default.
- W1916682500 cites W2024046085 @default.
- W1916682500 cites W2026944355 @default.
- W1916682500 cites W2027576066 @default.
- W1916682500 cites W2032170121 @default.
- W1916682500 cites W2035549557 @default.
- W1916682500 cites W2036547589 @default.
- W1916682500 cites W2038678505 @default.
- W1916682500 cites W2042465720 @default.
- W1916682500 cites W2050829396 @default.
- W1916682500 cites W2059927004 @default.
- W1916682500 cites W2069928051 @default.
- W1916682500 cites W2076261257 @default.
- W1916682500 cites W2083780116 @default.
- W1916682500 cites W2089454337 @default.
- W1916682500 cites W2093205346 @default.
- W1916682500 cites W2107908439 @default.
- W1916682500 cites W2112465475 @default.
- W1916682500 cites W2121394390 @default.
- W1916682500 cites W2131064753 @default.
- W1916682500 cites W2133824856 @default.
- W1916682500 cites W2133990480 @default.
- W1916682500 cites W2135716152 @default.
- W1916682500 cites W2142181701 @default.
- W1916682500 cites W2142827986 @default.
- W1916682500 cites W2143426320 @default.
- W1916682500 cites W2147953360 @default.
- W1916682500 cites W2153635508 @default.
- W1916682500 cites W2158068969 @default.
- W1916682500 cites W2160015256 @default.
- W1916682500 cites W2165320163 @default.
- W1916682500 cites W2168123127 @default.
- W1916682500 cites W2169264582 @default.
- W1916682500 cites W2171186197 @default.
- W1916682500 cites W2312288779 @default.
- W1916682500 cites W2328988907 @default.
- W1916682500 cites W3123427206 @default.
- W1916682500 cites W3123961192 @default.
- W1916682500 cites W3150796314 @default.
- W1916682500 doi "https://doi.org/10.1162/comj_a_00316" @default.
- W1916682500 hasPublicationYear "2015" @default.
- W1916682500 type Work @default.
- W1916682500 sameAs 1916682500 @default.
- W1916682500 citedByCount "15" @default.
- W1916682500 countsByYear W19166825002015 @default.
- W1916682500 countsByYear W19166825002016 @default.
- W1916682500 countsByYear W19166825002017 @default.
- W1916682500 countsByYear W19166825002018 @default.
- W1916682500 countsByYear W19166825002019 @default.
- W1916682500 countsByYear W19166825002020 @default.
- W1916682500 countsByYear W19166825002021 @default.
- W1916682500 crossrefType "journal-article" @default.
- W1916682500 hasAuthorship W1916682500A5011294245 @default.
- W1916682500 hasAuthorship W1916682500A5051091344 @default.
- W1916682500 hasAuthorship W1916682500A5069548004 @default.
- W1916682500 hasBestOaLocation W19166825002 @default.
- W1916682500 hasConcept C119857082 @default.
- W1916682500 hasConcept C121332964 @default.
- W1916682500 hasConcept C12267149 @default.
- W1916682500 hasConcept C124101348 @default.
- W1916682500 hasConcept C12582419 @default.
- W1916682500 hasConcept C142362112 @default.
- W1916682500 hasConcept C151956035 @default.
- W1916682500 hasConcept C153349607 @default.
- W1916682500 hasConcept C154945302 @default.
- W1916682500 hasConcept C177264268 @default.
- W1916682500 hasConcept C199360897 @default.
- W1916682500 hasConcept C24890656 @default.
- W1916682500 hasConcept C28490314 @default.
- W1916682500 hasConcept C41008148 @default.
- W1916682500 hasConcept C558565934 @default.
- W1916682500 hasConcept C83665646 @default.
- W1916682500 hasConcept C84525736 @default.
- W1916682500 hasConcept C95623464 @default.
- W1916682500 hasConceptScore W1916682500C119857082 @default.
- W1916682500 hasConceptScore W1916682500C121332964 @default.
- W1916682500 hasConceptScore W1916682500C12267149 @default.
- W1916682500 hasConceptScore W1916682500C124101348 @default.