Matches in SemOpenAlex for { <https://semopenalex.org/work/W1917042220> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1917042220 abstract "Highly automated driving is addressed more and more by research and also by vehicle manufacturers. In the past few years several demonstrations of automated vehicles driving on highways and even in urban scenarios were performed. In this context several challenges arose. One challenge is the understanding of complex situations and behavior generation within these especially in urban areas. Trajectory planning in these scenarios can be complex and expensive. Semantic scene modeling and planning can provide vital information to generate reliable and safe trajectories for automated vehicles. In this work we present a novel approach for high-level maneuver planning. It is based on a semantic state space that describes possible actions of a vehicle with respect to other scene elements like lane segments and traffic participants. The semantic characteristic of this state space allow for generalized planning even in complex situations. Concepts like heuristics and homotopies are utilized to optimize planning. Therefore, it is possible to efficiently generate high-level maneuver sequences for automated driving. The approach is tested on synthetic data as well as sensor data of a real test drive. and homotopies are utilized to optimize planning. Therefore, it is possible to efficiently generate high-level maneuver sequences for automated driving. The approach is tested on synthetic data as well as sensor data of a real test drive." @default.
- W1917042220 created "2016-06-24" @default.
- W1917042220 creator A5011138285 @default.
- W1917042220 creator A5041125963 @default.
- W1917042220 creator A5047689514 @default.
- W1917042220 creator A5060028048 @default.
- W1917042220 date "2015-09-01" @default.
- W1917042220 modified "2023-09-27" @default.
- W1917042220 title "Planning of High-Level Maneuver Sequences on Semantic State Spaces" @default.
- W1917042220 cites W1969483458 @default.
- W1917042220 cites W1992787855 @default.
- W1917042220 cites W1998277720 @default.
- W1917042220 cites W2011053498 @default.
- W1917042220 cites W2032924574 @default.
- W1917042220 cites W2120660345 @default.
- W1917042220 doi "https://doi.org/10.1109/itsc.2015.338" @default.
- W1917042220 hasPublicationYear "2015" @default.
- W1917042220 type Work @default.
- W1917042220 sameAs 1917042220 @default.
- W1917042220 citedByCount "9" @default.
- W1917042220 countsByYear W19170422202016 @default.
- W1917042220 countsByYear W19170422202017 @default.
- W1917042220 countsByYear W19170422202018 @default.
- W1917042220 countsByYear W19170422202019 @default.
- W1917042220 countsByYear W19170422202021 @default.
- W1917042220 countsByYear W19170422202022 @default.
- W1917042220 crossrefType "proceedings-article" @default.
- W1917042220 hasAuthorship W1917042220A5011138285 @default.
- W1917042220 hasAuthorship W1917042220A5041125963 @default.
- W1917042220 hasAuthorship W1917042220A5047689514 @default.
- W1917042220 hasAuthorship W1917042220A5060028048 @default.
- W1917042220 hasConcept C105795698 @default.
- W1917042220 hasConcept C111919701 @default.
- W1917042220 hasConcept C114073186 @default.
- W1917042220 hasConcept C11413529 @default.
- W1917042220 hasConcept C121332964 @default.
- W1917042220 hasConcept C1276947 @default.
- W1917042220 hasConcept C127705205 @default.
- W1917042220 hasConcept C13662910 @default.
- W1917042220 hasConcept C151730666 @default.
- W1917042220 hasConcept C154945302 @default.
- W1917042220 hasConcept C2779343474 @default.
- W1917042220 hasConcept C33923547 @default.
- W1917042220 hasConcept C41008148 @default.
- W1917042220 hasConcept C48103436 @default.
- W1917042220 hasConcept C72434380 @default.
- W1917042220 hasConcept C79403827 @default.
- W1917042220 hasConcept C81074085 @default.
- W1917042220 hasConcept C86803240 @default.
- W1917042220 hasConcept C90509273 @default.
- W1917042220 hasConceptScore W1917042220C105795698 @default.
- W1917042220 hasConceptScore W1917042220C111919701 @default.
- W1917042220 hasConceptScore W1917042220C114073186 @default.
- W1917042220 hasConceptScore W1917042220C11413529 @default.
- W1917042220 hasConceptScore W1917042220C121332964 @default.
- W1917042220 hasConceptScore W1917042220C1276947 @default.
- W1917042220 hasConceptScore W1917042220C127705205 @default.
- W1917042220 hasConceptScore W1917042220C13662910 @default.
- W1917042220 hasConceptScore W1917042220C151730666 @default.
- W1917042220 hasConceptScore W1917042220C154945302 @default.
- W1917042220 hasConceptScore W1917042220C2779343474 @default.
- W1917042220 hasConceptScore W1917042220C33923547 @default.
- W1917042220 hasConceptScore W1917042220C41008148 @default.
- W1917042220 hasConceptScore W1917042220C48103436 @default.
- W1917042220 hasConceptScore W1917042220C72434380 @default.
- W1917042220 hasConceptScore W1917042220C79403827 @default.
- W1917042220 hasConceptScore W1917042220C81074085 @default.
- W1917042220 hasConceptScore W1917042220C86803240 @default.
- W1917042220 hasConceptScore W1917042220C90509273 @default.
- W1917042220 hasLocation W19170422201 @default.
- W1917042220 hasOpenAccess W1917042220 @default.
- W1917042220 hasPrimaryLocation W19170422201 @default.
- W1917042220 hasRelatedWork W1844601532 @default.
- W1917042220 hasRelatedWork W1976484868 @default.
- W1917042220 hasRelatedWork W2762384326 @default.
- W1917042220 hasRelatedWork W2916645226 @default.
- W1917042220 hasRelatedWork W2963719271 @default.
- W1917042220 hasRelatedWork W3043152853 @default.
- W1917042220 hasRelatedWork W3086523987 @default.
- W1917042220 hasRelatedWork W3146338492 @default.
- W1917042220 hasRelatedWork W4300663577 @default.
- W1917042220 hasRelatedWork W4313117507 @default.
- W1917042220 isParatext "false" @default.
- W1917042220 isRetracted "false" @default.
- W1917042220 magId "1917042220" @default.
- W1917042220 workType "article" @default.