Matches in SemOpenAlex for { <https://semopenalex.org/work/W1918005367> ?p ?o ?g. }
- W1918005367 endingPage "1325" @default.
- W1918005367 startingPage "1306" @default.
- W1918005367 abstract "It was experimentally observed that the majority of real-world networks are scale-free and follow power law degree distribution. The aim of this paper is to study the algorithmic complexity of such typical networks. The contribution of this work is twofold.First, we define a deterministic condition for checking whether a graph has a power law degree distribution and experimentally validate it on real-world networks. This definition allows us to derive interesting properties of power law networks. We observe that for exponents of the degree distribution in the range [1, 2] such networks exhibit double power law phenomenon that was observed for several real-world networks. Our observation indicates that this phenomenon could be explained by just pure graph theoretical properties.The second aim of our work is to give a novel theoretical explanation why many algorithms run faster on real-world data than what is predicted by algorithmic worst-case analysis. We show how to exploit the power law degree distribution to design faster algorithms for a number of classic P-time problems including transitive closure, maximum matching, determinant, PageRank and matrix inverse. Moreover, we deal with the problems of counting triangles and finding maximum clique.In contrast to previously done average-case analyses, we believe that this is the first waterproof argument that explains why many real-world networks are easier. Moreover, an interesting aspect of this study is the existence of structure oblivious algorithms, i.e., algorithms that run faster on power law networks without explicit knowledge of this fact or explicit knowledge of the parameters of the degree distribution, e.g., algorithms for maximum clique or triangle counting." @default.
- W1918005367 created "2016-06-24" @default.
- W1918005367 creator A5025494465 @default.
- W1918005367 creator A5037989463 @default.
- W1918005367 creator A5044510135 @default.
- W1918005367 creator A5068128566 @default.
- W1918005367 date "2016-01-10" @default.
- W1918005367 modified "2023-09-24" @default.
- W1918005367 title "Algorithmic complexity of power law networks" @default.
- W1918005367 cites W102471322 @default.
- W1918005367 cites W149384130 @default.
- W1918005367 cites W1494735819 @default.
- W1918005367 cites W1500921805 @default.
- W1918005367 cites W1533559924 @default.
- W1918005367 cites W15553240 @default.
- W1918005367 cites W1568371145 @default.
- W1918005367 cites W1637986482 @default.
- W1918005367 cites W1710013235 @default.
- W1918005367 cites W1967066104 @default.
- W1918005367 cites W1972491401 @default.
- W1918005367 cites W1976584101 @default.
- W1918005367 cites W1978769824 @default.
- W1918005367 cites W1981745143 @default.
- W1918005367 cites W1989274820 @default.
- W1918005367 cites W1997698259 @default.
- W1918005367 cites W2000520486 @default.
- W1918005367 cites W2003813631 @default.
- W1918005367 cites W2008620264 @default.
- W1918005367 cites W2016311778 @default.
- W1918005367 cites W2023810039 @default.
- W1918005367 cites W2026320281 @default.
- W1918005367 cites W2034053794 @default.
- W1918005367 cites W2038073775 @default.
- W1918005367 cites W2042624802 @default.
- W1918005367 cites W2044104853 @default.
- W1918005367 cites W2054096179 @default.
- W1918005367 cites W2055245094 @default.
- W1918005367 cites W2056380633 @default.
- W1918005367 cites W2062628689 @default.
- W1918005367 cites W2064147138 @default.
- W1918005367 cites W2067247412 @default.
- W1918005367 cites W208025404 @default.
- W1918005367 cites W2083750870 @default.
- W1918005367 cites W2090814296 @default.
- W1918005367 cites W2091476183 @default.
- W1918005367 cites W2091620089 @default.
- W1918005367 cites W2095009063 @default.
- W1918005367 cites W2096559782 @default.
- W1918005367 cites W2115579680 @default.
- W1918005367 cites W2124637492 @default.
- W1918005367 cites W2130190334 @default.
- W1918005367 cites W2133352257 @default.
- W1918005367 cites W2153409685 @default.
- W1918005367 cites W2169015768 @default.
- W1918005367 cites W2755088640 @default.
- W1918005367 cites W2767544505 @default.
- W1918005367 cites W3106191812 @default.
- W1918005367 cites W72529835 @default.
- W1918005367 doi "https://doi.org/10.5555/2884435.2884526" @default.
- W1918005367 hasPublicationYear "2016" @default.
- W1918005367 type Work @default.
- W1918005367 sameAs 1918005367 @default.
- W1918005367 citedByCount "9" @default.
- W1918005367 countsByYear W19180053672016 @default.
- W1918005367 countsByYear W19180053672017 @default.
- W1918005367 countsByYear W19180053672018 @default.
- W1918005367 countsByYear W19180053672019 @default.
- W1918005367 countsByYear W19180053672020 @default.
- W1918005367 crossrefType "proceedings-article" @default.
- W1918005367 hasAuthorship W1918005367A5025494465 @default.
- W1918005367 hasAuthorship W1918005367A5037989463 @default.
- W1918005367 hasAuthorship W1918005367A5044510135 @default.
- W1918005367 hasAuthorship W1918005367A5068128566 @default.
- W1918005367 hasConcept C105795698 @default.
- W1918005367 hasConcept C11413529 @default.
- W1918005367 hasConcept C114614502 @default.
- W1918005367 hasConcept C121332964 @default.
- W1918005367 hasConcept C136764020 @default.
- W1918005367 hasConcept C165064840 @default.
- W1918005367 hasConcept C24890656 @default.
- W1918005367 hasConcept C2775997480 @default.
- W1918005367 hasConcept C33923547 @default.
- W1918005367 hasConcept C34947359 @default.
- W1918005367 hasConcept C41008148 @default.
- W1918005367 hasConcept C80444323 @default.
- W1918005367 hasConcept C87414783 @default.
- W1918005367 hasConcept C88230418 @default.
- W1918005367 hasConceptScore W1918005367C105795698 @default.
- W1918005367 hasConceptScore W1918005367C11413529 @default.
- W1918005367 hasConceptScore W1918005367C114614502 @default.
- W1918005367 hasConceptScore W1918005367C121332964 @default.
- W1918005367 hasConceptScore W1918005367C136764020 @default.
- W1918005367 hasConceptScore W1918005367C165064840 @default.
- W1918005367 hasConceptScore W1918005367C24890656 @default.
- W1918005367 hasConceptScore W1918005367C2775997480 @default.
- W1918005367 hasConceptScore W1918005367C33923547 @default.
- W1918005367 hasConceptScore W1918005367C34947359 @default.
- W1918005367 hasConceptScore W1918005367C41008148 @default.