Matches in SemOpenAlex for { <https://semopenalex.org/work/W1919055890> ?p ?o ?g. }
- W1919055890 endingPage "e0122199" @default.
- W1919055890 startingPage "e0122199" @default.
- W1919055890 abstract "Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F1≈0.93, MCC≈0.74, iAUC≈0.99) and sentences (F1≈0.76, MCC≈0.65, iAUC≈0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in classification of evidence sentences. Based on our thorough analysis of classifiers and feature transforms and the high classification performance achieved, we demonstrate that literature mining can aid DDI discovery by supporting automatic extraction of specific types of experimental evidence." @default.
- W1919055890 created "2016-06-24" @default.
- W1919055890 creator A5033016354 @default.
- W1919055890 creator A5034041314 @default.
- W1919055890 creator A5041038506 @default.
- W1919055890 creator A5056944235 @default.
- W1919055890 creator A5065682719 @default.
- W1919055890 date "2015-05-11" @default.
- W1919055890 modified "2023-10-02" @default.
- W1919055890 title "Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions from the Literature" @default.
- W1919055890 cites W1493036841 @default.
- W1919055890 cites W1976526581 @default.
- W1919055890 cites W1978786559 @default.
- W1919055890 cites W1994306321 @default.
- W1919055890 cites W2002474413 @default.
- W1919055890 cites W2009313526 @default.
- W1919055890 cites W2014556601 @default.
- W1919055890 cites W2014849717 @default.
- W1919055890 cites W2015735909 @default.
- W1919055890 cites W2029592334 @default.
- W1919055890 cites W2032445314 @default.
- W1919055890 cites W2034137005 @default.
- W1919055890 cites W2036080446 @default.
- W1919055890 cites W2037461646 @default.
- W1919055890 cites W2046747418 @default.
- W1919055890 cites W2051333321 @default.
- W1919055890 cites W2055162590 @default.
- W1919055890 cites W2061327015 @default.
- W1919055890 cites W2064030835 @default.
- W1919055890 cites W2085860988 @default.
- W1919055890 cites W2086169342 @default.
- W1919055890 cites W2098162425 @default.
- W1919055890 cites W2104882228 @default.
- W1919055890 cites W2105612251 @default.
- W1919055890 cites W2106618845 @default.
- W1919055890 cites W2107432340 @default.
- W1919055890 cites W2109553965 @default.
- W1919055890 cites W2112543617 @default.
- W1919055890 cites W2116231552 @default.
- W1919055890 cites W2118250684 @default.
- W1919055890 cites W2119002393 @default.
- W1919055890 cites W2122729962 @default.
- W1919055890 cites W2125413176 @default.
- W1919055890 cites W2126276057 @default.
- W1919055890 cites W2126607056 @default.
- W1919055890 cites W2133440648 @default.
- W1919055890 cites W2135037015 @default.
- W1919055890 cites W2135186741 @default.
- W1919055890 cites W2135192531 @default.
- W1919055890 cites W2138275182 @default.
- W1919055890 cites W2152143870 @default.
- W1919055890 cites W2165671627 @default.
- W1919055890 cites W2169918010 @default.
- W1919055890 cites W2170146596 @default.
- W1919055890 cites W2170189740 @default.
- W1919055890 cites W2485944607 @default.
- W1919055890 cites W2616702888 @default.
- W1919055890 cites W2963496357 @default.
- W1919055890 cites W4250755387 @default.
- W1919055890 cites W4296300888 @default.
- W1919055890 doi "https://doi.org/10.1371/journal.pone.0122199" @default.
- W1919055890 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4427505" @default.
- W1919055890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25961290" @default.
- W1919055890 hasPublicationYear "2015" @default.
- W1919055890 type Work @default.
- W1919055890 sameAs 1919055890 @default.
- W1919055890 citedByCount "30" @default.
- W1919055890 countsByYear W19190558902016 @default.
- W1919055890 countsByYear W19190558902017 @default.
- W1919055890 countsByYear W19190558902018 @default.
- W1919055890 countsByYear W19190558902019 @default.
- W1919055890 countsByYear W19190558902020 @default.
- W1919055890 countsByYear W19190558902021 @default.
- W1919055890 countsByYear W19190558902022 @default.
- W1919055890 countsByYear W19190558902023 @default.
- W1919055890 crossrefType "journal-article" @default.
- W1919055890 hasAuthorship W1919055890A5033016354 @default.
- W1919055890 hasAuthorship W1919055890A5034041314 @default.
- W1919055890 hasAuthorship W1919055890A5041038506 @default.
- W1919055890 hasAuthorship W1919055890A5056944235 @default.
- W1919055890 hasAuthorship W1919055890A5065682719 @default.
- W1919055890 hasBestOaLocation W19190558901 @default.
- W1919055890 hasConcept C108757681 @default.
- W1919055890 hasConcept C137546455 @default.
- W1919055890 hasConcept C154945302 @default.
- W1919055890 hasConcept C165141518 @default.
- W1919055890 hasConcept C204321447 @default.
- W1919055890 hasConcept C23123220 @default.
- W1919055890 hasConcept C2777530160 @default.
- W1919055890 hasConcept C41008148 @default.
- W1919055890 hasConcept C71472368 @default.
- W1919055890 hasConcept C95623464 @default.
- W1919055890 hasConceptScore W1919055890C108757681 @default.
- W1919055890 hasConceptScore W1919055890C137546455 @default.
- W1919055890 hasConceptScore W1919055890C154945302 @default.
- W1919055890 hasConceptScore W1919055890C165141518 @default.
- W1919055890 hasConceptScore W1919055890C204321447 @default.
- W1919055890 hasConceptScore W1919055890C23123220 @default.