Matches in SemOpenAlex for { <https://semopenalex.org/work/W1919373218> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1919373218 endingPage "998" @default.
- W1919373218 startingPage "989" @default.
- W1919373218 abstract "In this paper, we present a direct bijective proof of the hook-length formula for standard immaculate tableaux, which arose in the study of non-commutative symmetric functions. Our proof is along the spirit of Novelli, Pak and Stoyanovskiĭ’s combinatorial proof of the hook-length formula for standard Young tableaux." @default.
- W1919373218 created "2016-06-24" @default.
- W1919373218 creator A5022280555 @default.
- W1919373218 creator A5014633640 @default.
- W1919373218 date "2015-09-24" @default.
- W1919373218 modified "2023-09-27" @default.
- W1919373218 title "A bijective proof of the hook-length formula for standard immaculate tableaux" @default.
- W1919373218 cites W1965521120 @default.
- W1919373218 cites W2054691312 @default.
- W1919373218 cites W2084228086 @default.
- W1919373218 cites W2128430147 @default.
- W1919373218 cites W2314376244 @default.
- W1919373218 cites W3104993986 @default.
- W1919373218 doi "https://doi.org/10.1090/proc/12899" @default.
- W1919373218 hasPublicationYear "2015" @default.
- W1919373218 type Work @default.
- W1919373218 sameAs 1919373218 @default.
- W1919373218 citedByCount "2" @default.
- W1919373218 countsByYear W19193732182018 @default.
- W1919373218 countsByYear W19193732182022 @default.
- W1919373218 crossrefType "journal-article" @default.
- W1919373218 hasAuthorship W1919373218A5014633640 @default.
- W1919373218 hasAuthorship W1919373218A5022280555 @default.
- W1919373218 hasBestOaLocation W19193732181 @default.
- W1919373218 hasConcept C114614502 @default.
- W1919373218 hasConcept C118539577 @default.
- W1919373218 hasConcept C118615104 @default.
- W1919373218 hasConcept C127413603 @default.
- W1919373218 hasConcept C161505775 @default.
- W1919373218 hasConcept C165368118 @default.
- W1919373218 hasConcept C24424167 @default.
- W1919373218 hasConcept C2777586403 @default.
- W1919373218 hasConcept C33923547 @default.
- W1919373218 hasConcept C66938386 @default.
- W1919373218 hasConceptScore W1919373218C114614502 @default.
- W1919373218 hasConceptScore W1919373218C118539577 @default.
- W1919373218 hasConceptScore W1919373218C118615104 @default.
- W1919373218 hasConceptScore W1919373218C127413603 @default.
- W1919373218 hasConceptScore W1919373218C161505775 @default.
- W1919373218 hasConceptScore W1919373218C165368118 @default.
- W1919373218 hasConceptScore W1919373218C24424167 @default.
- W1919373218 hasConceptScore W1919373218C2777586403 @default.
- W1919373218 hasConceptScore W1919373218C33923547 @default.
- W1919373218 hasConceptScore W1919373218C66938386 @default.
- W1919373218 hasIssue "3" @default.
- W1919373218 hasLocation W19193732181 @default.
- W1919373218 hasLocation W19193732182 @default.
- W1919373218 hasOpenAccess W1919373218 @default.
- W1919373218 hasPrimaryLocation W19193732181 @default.
- W1919373218 hasRelatedWork W1498990725 @default.
- W1919373218 hasRelatedWork W1917970953 @default.
- W1919373218 hasRelatedWork W1919373218 @default.
- W1919373218 hasRelatedWork W2169850462 @default.
- W1919373218 hasRelatedWork W2949146761 @default.
- W1919373218 hasRelatedWork W2950986651 @default.
- W1919373218 hasRelatedWork W2963744284 @default.
- W1919373218 hasRelatedWork W2992735072 @default.
- W1919373218 hasRelatedWork W3196129591 @default.
- W1919373218 hasRelatedWork W4302314588 @default.
- W1919373218 hasVolume "144" @default.
- W1919373218 isParatext "false" @default.
- W1919373218 isRetracted "false" @default.
- W1919373218 magId "1919373218" @default.
- W1919373218 workType "article" @default.