Matches in SemOpenAlex for { <https://semopenalex.org/work/W1920797865> ?p ?o ?g. }
- W1920797865 abstract "Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world." @default.
- W1920797865 created "2016-06-24" @default.
- W1920797865 creator A5023811677 @default.
- W1920797865 creator A5034246691 @default.
- W1920797865 creator A5072230420 @default.
- W1920797865 creator A5084861593 @default.
- W1920797865 date "2015-10-13" @default.
- W1920797865 modified "2023-10-18" @default.
- W1920797865 title "Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot" @default.
- W1920797865 cites W1523939596 @default.
- W1920797865 cites W1535315439 @default.
- W1920797865 cites W1556269591 @default.
- W1920797865 cites W1580215564 @default.
- W1920797865 cites W1591799957 @default.
- W1920797865 cites W1666724297 @default.
- W1920797865 cites W1844320817 @default.
- W1920797865 cites W185220062 @default.
- W1920797865 cites W1964047677 @default.
- W1920797865 cites W1968748620 @default.
- W1920797865 cites W1970461118 @default.
- W1920797865 cites W1973311280 @default.
- W1920797865 cites W1974215544 @default.
- W1920797865 cites W1974336085 @default.
- W1920797865 cites W1974551448 @default.
- W1920797865 cites W1980241133 @default.
- W1920797865 cites W1985161922 @default.
- W1920797865 cites W1992908964 @default.
- W1920797865 cites W1995837155 @default.
- W1920797865 cites W2001032130 @default.
- W1920797865 cites W2001685400 @default.
- W1920797865 cites W2006207808 @default.
- W1920797865 cites W2007692721 @default.
- W1920797865 cites W2014040064 @default.
- W1920797865 cites W2018148375 @default.
- W1920797865 cites W2020250530 @default.
- W1920797865 cites W2020825327 @default.
- W1920797865 cites W2021538146 @default.
- W1920797865 cites W2025635699 @default.
- W1920797865 cites W2027951246 @default.
- W1920797865 cites W2032939132 @default.
- W1920797865 cites W2035788321 @default.
- W1920797865 cites W2039348394 @default.
- W1920797865 cites W2044313349 @default.
- W1920797865 cites W2054959444 @default.
- W1920797865 cites W2061934921 @default.
- W1920797865 cites W2064759622 @default.
- W1920797865 cites W2065220180 @default.
- W1920797865 cites W2067940379 @default.
- W1920797865 cites W2073398883 @default.
- W1920797865 cites W2082278239 @default.
- W1920797865 cites W2084302108 @default.
- W1920797865 cites W2093996724 @default.
- W1920797865 cites W2099801443 @default.
- W1920797865 cites W2122482254 @default.
- W1920797865 cites W2131526309 @default.
- W1920797865 cites W2131849699 @default.
- W1920797865 cites W2136848732 @default.
- W1920797865 cites W2141232319 @default.
- W1920797865 cites W2143873689 @default.
- W1920797865 cites W2161330603 @default.
- W1920797865 cites W2162301759 @default.
- W1920797865 cites W2163427012 @default.
- W1920797865 cites W2164337336 @default.
- W1920797865 cites W2324310666 @default.
- W1920797865 cites W2324914809 @default.
- W1920797865 cites W2327222415 @default.
- W1920797865 cites W2624516165 @default.
- W1920797865 doi "https://doi.org/10.3389/fnbot.2015.00011" @default.
- W1920797865 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4602151" @default.
- W1920797865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26528176" @default.
- W1920797865 hasPublicationYear "2015" @default.
- W1920797865 type Work @default.
- W1920797865 sameAs 1920797865 @default.
- W1920797865 citedByCount "26" @default.
- W1920797865 countsByYear W19207978652016 @default.
- W1920797865 countsByYear W19207978652017 @default.
- W1920797865 countsByYear W19207978652018 @default.
- W1920797865 countsByYear W19207978652019 @default.
- W1920797865 countsByYear W19207978652021 @default.
- W1920797865 countsByYear W19207978652022 @default.
- W1920797865 countsByYear W19207978652023 @default.
- W1920797865 crossrefType "journal-article" @default.
- W1920797865 hasAuthorship W1920797865A5023811677 @default.
- W1920797865 hasAuthorship W1920797865A5034246691 @default.
- W1920797865 hasAuthorship W1920797865A5072230420 @default.
- W1920797865 hasAuthorship W1920797865A5084861593 @default.
- W1920797865 hasBestOaLocation W19207978651 @default.
- W1920797865 hasConcept C147168706 @default.
- W1920797865 hasConcept C154945302 @default.
- W1920797865 hasConcept C15744967 @default.
- W1920797865 hasConcept C169760540 @default.
- W1920797865 hasConcept C41008148 @default.
- W1920797865 hasConcept C50644808 @default.
- W1920797865 hasConcept C90509273 @default.
- W1920797865 hasConcept C94487597 @default.
- W1920797865 hasConceptScore W1920797865C147168706 @default.
- W1920797865 hasConceptScore W1920797865C154945302 @default.
- W1920797865 hasConceptScore W1920797865C15744967 @default.
- W1920797865 hasConceptScore W1920797865C169760540 @default.
- W1920797865 hasConceptScore W1920797865C41008148 @default.