Matches in SemOpenAlex for { <https://semopenalex.org/work/W192082562> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W192082562 abstract "nnnnn Two Methodologies have been mainly used for technical efficiency measurement: nonparametric (deterministic) data envelopment analysis (DEA); and parametric stochastic frontier analysis (SFA). This study uses recent advances in nonparametric regression estimation to relax the restrictive parametric assumptions on stochastic frontier models. nnnnn A number of nonparametric estimation techniques are available from the popular kernel smoothing to methods that have been rarely used. Most of the previous studies on non- and semiparametric stochastic frontiers have used kernel smoothing. However generalization of these approaches to more complex variants of stochastic frontier models is not usually straightforward or practical. This study employs a recently emerging nonparametric technique known as penalized splines (or P-splines) to provide a robust nonparametric approach to efficiency measurement. The P-spline approach involves replacing the nonparametric component of the regression function with a spline function that is linear in the parameters. Constraints (penalties) are imposed on the parameters to prevent over-fitting. Estimation then can be carried out in a least squares, mixed model or Bayesian framework. nnnnn This dissertation shows how P-splines can be used to estimate nonparametric versions of the main stochastic frontier models appearing in the literature: cross-sectional models; fixed and random effects panel data models with time-invariant or time-varying inefficiency effects; and models that incorporate environmental variables. The performance of different P-spline estimators is assessed against the performance of several parametric alternatives in a series of simulation experiments and applications to real data. The performance of the nonparametric estimators is found to be comparable with the parametric estimators when the parametric models make correct assumptions concerning underlying functional forms and outperform parametric estimators when the true technology is of unknown nonlinear form." @default.
- W192082562 created "2016-06-24" @default.
- W192082562 creator A5001384113 @default.
- W192082562 date "2005-01-01" @default.
- W192082562 modified "2023-09-27" @default.
- W192082562 title "Non- and semi-parametric stochastic frontiers : a penalised spline approach" @default.
- W192082562 hasPublicationYear "2005" @default.
- W192082562 type Work @default.
- W192082562 sameAs 192082562 @default.
- W192082562 citedByCount "0" @default.
- W192082562 crossrefType "journal-article" @default.
- W192082562 hasAuthorship W192082562A5001384113 @default.
- W192082562 hasConcept C102366305 @default.
- W192082562 hasConcept C10390562 @default.
- W192082562 hasConcept C105795698 @default.
- W192082562 hasConcept C107457265 @default.
- W192082562 hasConcept C117251300 @default.
- W192082562 hasConcept C126255220 @default.
- W192082562 hasConcept C127413603 @default.
- W192082562 hasConcept C149782125 @default.
- W192082562 hasConcept C185429906 @default.
- W192082562 hasConcept C19539793 @default.
- W192082562 hasConcept C205203396 @default.
- W192082562 hasConcept C31447003 @default.
- W192082562 hasConcept C33923547 @default.
- W192082562 hasConcept C41008148 @default.
- W192082562 hasConcept C66938386 @default.
- W192082562 hasConcept C74127309 @default.
- W192082562 hasConcept C78297888 @default.
- W192082562 hasConceptScore W192082562C102366305 @default.
- W192082562 hasConceptScore W192082562C10390562 @default.
- W192082562 hasConceptScore W192082562C105795698 @default.
- W192082562 hasConceptScore W192082562C107457265 @default.
- W192082562 hasConceptScore W192082562C117251300 @default.
- W192082562 hasConceptScore W192082562C126255220 @default.
- W192082562 hasConceptScore W192082562C127413603 @default.
- W192082562 hasConceptScore W192082562C149782125 @default.
- W192082562 hasConceptScore W192082562C185429906 @default.
- W192082562 hasConceptScore W192082562C19539793 @default.
- W192082562 hasConceptScore W192082562C205203396 @default.
- W192082562 hasConceptScore W192082562C31447003 @default.
- W192082562 hasConceptScore W192082562C33923547 @default.
- W192082562 hasConceptScore W192082562C41008148 @default.
- W192082562 hasConceptScore W192082562C66938386 @default.
- W192082562 hasConceptScore W192082562C74127309 @default.
- W192082562 hasConceptScore W192082562C78297888 @default.
- W192082562 hasLocation W1920825621 @default.
- W192082562 hasOpenAccess W192082562 @default.
- W192082562 hasPrimaryLocation W1920825621 @default.
- W192082562 hasRelatedWork W1497439833 @default.
- W192082562 hasRelatedWork W1508163230 @default.
- W192082562 hasRelatedWork W1572810623 @default.
- W192082562 hasRelatedWork W1795797942 @default.
- W192082562 hasRelatedWork W2080726496 @default.
- W192082562 hasRelatedWork W2278004466 @default.
- W192082562 hasRelatedWork W2338579333 @default.
- W192082562 hasRelatedWork W2387464836 @default.
- W192082562 hasRelatedWork W2951885530 @default.
- W192082562 hasRelatedWork W2953141363 @default.
- W192082562 hasRelatedWork W2960368114 @default.
- W192082562 hasRelatedWork W3037450330 @default.
- W192082562 hasRelatedWork W3037947779 @default.
- W192082562 hasRelatedWork W3123931813 @default.
- W192082562 hasRelatedWork W3125014658 @default.
- W192082562 hasRelatedWork W3125164209 @default.
- W192082562 hasRelatedWork W3148611569 @default.
- W192082562 hasRelatedWork W3180619160 @default.
- W192082562 hasRelatedWork W3197736511 @default.
- W192082562 hasRelatedWork W55525542 @default.
- W192082562 isParatext "false" @default.
- W192082562 isRetracted "false" @default.
- W192082562 magId "192082562" @default.
- W192082562 workType "article" @default.