Matches in SemOpenAlex for { <https://semopenalex.org/work/W192134417> ?p ?o ?g. }
- W192134417 abstract "We consider several geometric special cases of the set cover problem. The first problem we consider is the decomposing coverings problem. Here, we consider a combinatorial problem: given a collection of points in the plane and a collection of objects in the plane such that each point is contained in at least k objects, partition the objects into as many sets as possible so that each set covers all of the points. We show that if the objects are translates of a convex polygon, then it is possible to partition the translates into Ω( k) covers. The second problem we consider is the planar sensor cover problem. This problem is a generalization of the decomposing coverings problem. We are given a collection of points in the plane and a collection of objects in the plane. Each of the objects can be thought of as a sensor. The sensors have a duration which can be thought of as the battery life of the sensor. The planar sensor cover problem is to schedule a start time to each of the sensors so that the points are covered by a sensor for as long as possible. We give a constant factor approximation for this problem. The key contribution to this result is a constant factor approximation to a one-dimensional version of the problem called the restricted strip cover (RSC) problem. Our result for RSC improves upon the previous best O(log log log n)-approximation, and our result for the planar sensor cover problem improves upon the previous best O (log n)-approximation. The next problem we consider is the metric clustering to minimize the sum of radii problem. Here, we are given an n-point metric (P, d), and an integer k > 0. We are interested in covering the points in P with at most k balls so that the sum of the radii of the balls is minimized. We give a randomized algorithm which solves the problem exactly in nO(log n log Δ) time, where Δ is the ratio of the maximum interpoint distance to the minimum interpoint distance. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and when the metric has constant doubling dimension. The last problem we consider is the minimum dominating set problem for disk graphs. In this problem, we are given a set of disks in the plane, and we want to choose a minimum-cardinality subset of disks such that every disk is either in the set or intersects a disk in the set. For any e>0, we show that a simple local search algorithm is a (1+e)-approximation for the problem which improves upon the previous best O(log n)-approximation algorithm." @default.
- W192134417 created "2016-06-24" @default.
- W192134417 creator A5058071338 @default.
- W192134417 creator A5086697145 @default.
- W192134417 date "2018-11-29" @default.
- W192134417 modified "2023-09-28" @default.
- W192134417 title "Clusters and covers" @default.
- W192134417 cites W1506713977 @default.
- W192134417 cites W1511888745 @default.
- W192134417 cites W1515157528 @default.
- W192134417 cites W1607840687 @default.
- W192134417 cites W1675952514 @default.
- W192134417 cites W1816352825 @default.
- W192134417 cites W1850573590 @default.
- W192134417 cites W1967005434 @default.
- W192134417 cites W1974383230 @default.
- W192134417 cites W1982498410 @default.
- W192134417 cites W1984953641 @default.
- W192134417 cites W1986134212 @default.
- W192134417 cites W2000258988 @default.
- W192134417 cites W2003159902 @default.
- W192134417 cites W2004328207 @default.
- W192134417 cites W2011039300 @default.
- W192134417 cites W2015752867 @default.
- W192134417 cites W2028738060 @default.
- W192134417 cites W2030575034 @default.
- W192134417 cites W2031149390 @default.
- W192134417 cites W2034188144 @default.
- W192134417 cites W2040924621 @default.
- W192134417 cites W2043718124 @default.
- W192134417 cites W2048390544 @default.
- W192134417 cites W2054464090 @default.
- W192134417 cites W2054505111 @default.
- W192134417 cites W2059453880 @default.
- W192134417 cites W2060963575 @default.
- W192134417 cites W2062918232 @default.
- W192134417 cites W2063572899 @default.
- W192134417 cites W2066577300 @default.
- W192134417 cites W2077689859 @default.
- W192134417 cites W2082353536 @default.
- W192134417 cites W2091889409 @default.
- W192134417 cites W2094511120 @default.
- W192134417 cites W2099819831 @default.
- W192134417 cites W2102199239 @default.
- W192134417 cites W2108766162 @default.
- W192134417 cites W2112692787 @default.
- W192134417 cites W2114493937 @default.
- W192134417 cites W2118109409 @default.
- W192134417 cites W2120424341 @default.
- W192134417 cites W2127739958 @default.
- W192134417 cites W2129478088 @default.
- W192134417 cites W2134616818 @default.
- W192134417 cites W2143996311 @default.
- W192134417 cites W2144207505 @default.
- W192134417 cites W2147465311 @default.
- W192134417 cites W2148431844 @default.
- W192134417 cites W2152221184 @default.
- W192134417 cites W2157054705 @default.
- W192134417 cites W2169484333 @default.
- W192134417 cites W2220719914 @default.
- W192134417 cites W2611804663 @default.
- W192134417 cites W833203757 @default.
- W192134417 cites W115508274 @default.
- W192134417 doi "https://doi.org/10.17077/etd.frlw4u2t" @default.
- W192134417 hasPublicationYear "2018" @default.
- W192134417 type Work @default.
- W192134417 sameAs 192134417 @default.
- W192134417 citedByCount "2" @default.
- W192134417 countsByYear W1921344172017 @default.
- W192134417 countsByYear W1921344172021 @default.
- W192134417 crossrefType "dissertation" @default.
- W192134417 hasAuthorship W192134417A5058071338 @default.
- W192134417 hasAuthorship W192134417A5086697145 @default.
- W192134417 hasConcept C100808899 @default.
- W192134417 hasConcept C103646786 @default.
- W192134417 hasConcept C11413529 @default.
- W192134417 hasConcept C114614502 @default.
- W192134417 hasConcept C118615104 @default.
- W192134417 hasConcept C121684516 @default.
- W192134417 hasConcept C126042441 @default.
- W192134417 hasConcept C127413603 @default.
- W192134417 hasConcept C134786449 @default.
- W192134417 hasConcept C148764684 @default.
- W192134417 hasConcept C177264268 @default.
- W192134417 hasConcept C17825722 @default.
- W192134417 hasConcept C190694206 @default.
- W192134417 hasConcept C199360897 @default.
- W192134417 hasConcept C2524010 @default.
- W192134417 hasConcept C2780428219 @default.
- W192134417 hasConcept C29123130 @default.
- W192134417 hasConcept C33923547 @default.
- W192134417 hasConcept C41008148 @default.
- W192134417 hasConcept C42812 @default.
- W192134417 hasConcept C76155785 @default.
- W192134417 hasConcept C78519656 @default.
- W192134417 hasConceptScore W192134417C100808899 @default.
- W192134417 hasConceptScore W192134417C103646786 @default.
- W192134417 hasConceptScore W192134417C11413529 @default.
- W192134417 hasConceptScore W192134417C114614502 @default.
- W192134417 hasConceptScore W192134417C118615104 @default.