Matches in SemOpenAlex for { <https://semopenalex.org/work/W1924550322> ?p ?o ?g. }
- W1924550322 endingPage "6528" @default.
- W1924550322 startingPage "6520" @default.
- W1924550322 abstract "To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy.The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method.In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC=0.85±0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96±0.03 (p<0.01).This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy." @default.
- W1924550322 created "2016-06-24" @default.
- W1924550322 creator A5015073323 @default.
- W1924550322 creator A5035153981 @default.
- W1924550322 creator A5035793315 @default.
- W1924550322 creator A5045998635 @default.
- W1924550322 creator A5057287134 @default.
- W1924550322 creator A5071542775 @default.
- W1924550322 date "2015-10-19" @default.
- W1924550322 modified "2023-10-17" @default.
- W1924550322 title "Computer‐aided breast MR image feature analysis for prediction of tumor response to chemotherapy" @default.
- W1924550322 cites W1601967150 @default.
- W1924550322 cites W1860091741 @default.
- W1924550322 cites W1972630980 @default.
- W1924550322 cites W1980483305 @default.
- W1924550322 cites W1981728876 @default.
- W1924550322 cites W1990158414 @default.
- W1924550322 cites W2000971074 @default.
- W1924550322 cites W2013906202 @default.
- W1924550322 cites W2014379348 @default.
- W1924550322 cites W2019607817 @default.
- W1924550322 cites W2026066830 @default.
- W1924550322 cites W2037713654 @default.
- W1924550322 cites W2047368428 @default.
- W1924550322 cites W2048156613 @default.
- W1924550322 cites W2048988218 @default.
- W1924550322 cites W2059165786 @default.
- W1924550322 cites W2076309420 @default.
- W1924550322 cites W2077591086 @default.
- W1924550322 cites W2079416270 @default.
- W1924550322 cites W2095323310 @default.
- W1924550322 cites W2139248078 @default.
- W1924550322 cites W2140727296 @default.
- W1924550322 cites W2143858998 @default.
- W1924550322 cites W2148143831 @default.
- W1924550322 cites W2151744107 @default.
- W1924550322 cites W2167465004 @default.
- W1924550322 cites W2170552969 @default.
- W1924550322 cites W2918098512 @default.
- W1924550322 cites W4376043614 @default.
- W1924550322 doi "https://doi.org/10.1118/1.4933198" @default.
- W1924550322 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4617733" @default.
- W1924550322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26520742" @default.
- W1924550322 hasPublicationYear "2015" @default.
- W1924550322 type Work @default.
- W1924550322 sameAs 1924550322 @default.
- W1924550322 citedByCount "43" @default.
- W1924550322 countsByYear W19245503222016 @default.
- W1924550322 countsByYear W19245503222017 @default.
- W1924550322 countsByYear W19245503222018 @default.
- W1924550322 countsByYear W19245503222019 @default.
- W1924550322 countsByYear W19245503222020 @default.
- W1924550322 countsByYear W19245503222021 @default.
- W1924550322 countsByYear W19245503222022 @default.
- W1924550322 countsByYear W19245503222023 @default.
- W1924550322 crossrefType "journal-article" @default.
- W1924550322 hasAuthorship W1924550322A5015073323 @default.
- W1924550322 hasAuthorship W1924550322A5035153981 @default.
- W1924550322 hasAuthorship W1924550322A5035793315 @default.
- W1924550322 hasAuthorship W1924550322A5045998635 @default.
- W1924550322 hasAuthorship W1924550322A5057287134 @default.
- W1924550322 hasAuthorship W1924550322A5071542775 @default.
- W1924550322 hasBestOaLocation W19245503222 @default.
- W1924550322 hasConcept C115961682 @default.
- W1924550322 hasConcept C119857082 @default.
- W1924550322 hasConcept C121608353 @default.
- W1924550322 hasConcept C126322002 @default.
- W1924550322 hasConcept C126838900 @default.
- W1924550322 hasConcept C138885662 @default.
- W1924550322 hasConcept C143409427 @default.
- W1924550322 hasConcept C153180895 @default.
- W1924550322 hasConcept C154945302 @default.
- W1924550322 hasConcept C2776401178 @default.
- W1924550322 hasConcept C2779549770 @default.
- W1924550322 hasConcept C41008148 @default.
- W1924550322 hasConcept C41895202 @default.
- W1924550322 hasConcept C530470458 @default.
- W1924550322 hasConcept C58471807 @default.
- W1924550322 hasConcept C71924100 @default.
- W1924550322 hasConcept C75294576 @default.
- W1924550322 hasConcept C95623464 @default.
- W1924550322 hasConceptScore W1924550322C115961682 @default.
- W1924550322 hasConceptScore W1924550322C119857082 @default.
- W1924550322 hasConceptScore W1924550322C121608353 @default.
- W1924550322 hasConceptScore W1924550322C126322002 @default.
- W1924550322 hasConceptScore W1924550322C126838900 @default.
- W1924550322 hasConceptScore W1924550322C138885662 @default.
- W1924550322 hasConceptScore W1924550322C143409427 @default.
- W1924550322 hasConceptScore W1924550322C153180895 @default.
- W1924550322 hasConceptScore W1924550322C154945302 @default.
- W1924550322 hasConceptScore W1924550322C2776401178 @default.
- W1924550322 hasConceptScore W1924550322C2779549770 @default.
- W1924550322 hasConceptScore W1924550322C41008148 @default.
- W1924550322 hasConceptScore W1924550322C41895202 @default.
- W1924550322 hasConceptScore W1924550322C530470458 @default.
- W1924550322 hasConceptScore W1924550322C58471807 @default.
- W1924550322 hasConceptScore W1924550322C71924100 @default.
- W1924550322 hasConceptScore W1924550322C75294576 @default.