Matches in SemOpenAlex for { <https://semopenalex.org/work/W1925018557> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1925018557 endingPage "354" @default.
- W1925018557 startingPage "354" @default.
- W1925018557 abstract "<p>Low visibility and/or ceiling conditions have a strong impact on airports' traffic and their prediction is still a challenge for meteorologists. In this paper, the local characteristics of Low Visibility Procedure (LVP) conditions are investigated and the artificial neural network (ANN) based on resilient backpropagation as supervised learning algorithm is used to predict such meteorological conditions at Mohamed V international airport, Casablanca, Morocco. This article aims to assess the ANN ability to provide accurate prediction of such events using the meteorological parameters from the Automated Weather Observation Station (AWOS) over the period from January 2009 to March 2015. First, LVP conditions were classified according to their classes (fog LVP and no fog LVP) and their sources (Runway Visual Range -RVR LVP-, Ceiling -HCB LVP- or both) for both runway end points (35R and 17L). It is found that most of LVP conditions are associated with fog and are often due to decreasing of RVR below 600m. Next, Eleven ANNs were developed to produce LVP prediction for consecutive hourly valid forecast times covering the night and early morning. The Multi-Layer Perceptron (MLP) architecture with one hidden layer is used in this study. Results show that ANNs are able to well predict the LVP conditions and are robust to errors in input parameters for a relative error below 10%. Furthermore, it is found that the ANN's skill is less sensitive to LVP type being predicted.</p>" @default.
- W1925018557 created "2016-06-24" @default.
- W1925018557 creator A5036760176 @default.
- W1925018557 creator A5053256285 @default.
- W1925018557 date "2015-10-12" @default.
- W1925018557 modified "2023-10-18" @default.
- W1925018557 title "LVP conditions at Mohamed V airport, Morocco: Local characteristics and prediction using neural networks" @default.
- W1925018557 cites W1586335931 @default.
- W1925018557 cites W1977177161 @default.
- W1925018557 cites W1980327899 @default.
- W1925018557 cites W2000603059 @default.
- W1925018557 cites W2017800052 @default.
- W1925018557 cites W2028109097 @default.
- W1925018557 cites W2036649100 @default.
- W1925018557 cites W2041648773 @default.
- W1925018557 cites W2078751618 @default.
- W1925018557 cites W2084547407 @default.
- W1925018557 cites W2153529786 @default.
- W1925018557 cites W2179154612 @default.
- W1925018557 cites W3207342693 @default.
- W1925018557 cites W34176136 @default.
- W1925018557 cites W94052953 @default.
- W1925018557 doi "https://doi.org/10.14419/ijbas.v4i4.5044" @default.
- W1925018557 hasPublicationYear "2015" @default.
- W1925018557 type Work @default.
- W1925018557 sameAs 1925018557 @default.
- W1925018557 citedByCount "7" @default.
- W1925018557 countsByYear W19250185572018 @default.
- W1925018557 countsByYear W19250185572020 @default.
- W1925018557 countsByYear W19250185572021 @default.
- W1925018557 countsByYear W19250185572022 @default.
- W1925018557 countsByYear W19250185572023 @default.
- W1925018557 crossrefType "journal-article" @default.
- W1925018557 hasAuthorship W1925018557A5036760176 @default.
- W1925018557 hasAuthorship W1925018557A5053256285 @default.
- W1925018557 hasBestOaLocation W19250185571 @default.
- W1925018557 hasConcept C119857082 @default.
- W1925018557 hasConcept C123403432 @default.
- W1925018557 hasConcept C153294291 @default.
- W1925018557 hasConcept C154945302 @default.
- W1925018557 hasConcept C155032097 @default.
- W1925018557 hasConcept C179717631 @default.
- W1925018557 hasConcept C205649164 @default.
- W1925018557 hasConcept C2777489069 @default.
- W1925018557 hasConcept C39432304 @default.
- W1925018557 hasConcept C41008148 @default.
- W1925018557 hasConcept C50644808 @default.
- W1925018557 hasConcept C58640448 @default.
- W1925018557 hasConcept C60908668 @default.
- W1925018557 hasConcept C81155309 @default.
- W1925018557 hasConceptScore W1925018557C119857082 @default.
- W1925018557 hasConceptScore W1925018557C123403432 @default.
- W1925018557 hasConceptScore W1925018557C153294291 @default.
- W1925018557 hasConceptScore W1925018557C154945302 @default.
- W1925018557 hasConceptScore W1925018557C155032097 @default.
- W1925018557 hasConceptScore W1925018557C179717631 @default.
- W1925018557 hasConceptScore W1925018557C205649164 @default.
- W1925018557 hasConceptScore W1925018557C2777489069 @default.
- W1925018557 hasConceptScore W1925018557C39432304 @default.
- W1925018557 hasConceptScore W1925018557C41008148 @default.
- W1925018557 hasConceptScore W1925018557C50644808 @default.
- W1925018557 hasConceptScore W1925018557C58640448 @default.
- W1925018557 hasConceptScore W1925018557C60908668 @default.
- W1925018557 hasConceptScore W1925018557C81155309 @default.
- W1925018557 hasIssue "4" @default.
- W1925018557 hasLocation W19250185571 @default.
- W1925018557 hasOpenAccess W1925018557 @default.
- W1925018557 hasPrimaryLocation W19250185571 @default.
- W1925018557 hasRelatedWork W1602632558 @default.
- W1925018557 hasRelatedWork W1967289178 @default.
- W1925018557 hasRelatedWork W2013585556 @default.
- W1925018557 hasRelatedWork W2150138875 @default.
- W1925018557 hasRelatedWork W2600618515 @default.
- W1925018557 hasRelatedWork W3201511606 @default.
- W1925018557 hasRelatedWork W4231994957 @default.
- W1925018557 hasRelatedWork W749491080 @default.
- W1925018557 hasRelatedWork W2284565437 @default.
- W1925018557 hasRelatedWork W2760547049 @default.
- W1925018557 hasVolume "4" @default.
- W1925018557 isParatext "false" @default.
- W1925018557 isRetracted "false" @default.
- W1925018557 magId "1925018557" @default.
- W1925018557 workType "article" @default.