Matches in SemOpenAlex for { <https://semopenalex.org/work/W1926301514> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1926301514 abstract "Recently, emotions and their history have become a focus point for research in different academic fields. Traditional sentiment analysis approaches generally try to fit relatively simple emotion models (e.g., positive/negative emotion) to contemporary data. However, this is not sufficient for Digital Humanities scholars who are interested in research questions about changes in emotional expressions over time. Answering these questions requires more complex, historically accurate emotion models applied to historical data. The Historic Embodied Emotion Model (HEEM) was developed to study the relationship between body parts and emotional expressions in 17th and 18th century texts. This paper presents the HEEM emotion model and associated dataset from a technical perspective, and examines the performance of a multi-label text classification approach for predicting HEEM labels and labels from two simpler models (i.e., HEEM Emotion Clusters and the Positive/Negative model). The results show that labels in the complex model can be predicted with micro-averaged F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> = 0.45, and macro-averaged F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> = 0.24. Labels with fewer samples (<; 40) are not predicted. Overall performance on the simpler emotion models is significantly better, but for individual labels the effect is mixed. We demonstrate that a multi-label text classification approach to learning complex emotion models on historical data is feasible." @default.
- W1926301514 created "2016-06-24" @default.
- W1926301514 creator A5004663257 @default.
- W1926301514 creator A5029982012 @default.
- W1926301514 creator A5089332429 @default.
- W1926301514 creator A5090167566 @default.
- W1926301514 date "2015-08-01" @default.
- W1926301514 modified "2023-10-08" @default.
- W1926301514 title "HEEM, a Complex Model for Mining Emotions in Historical Text" @default.
- W1926301514 cites W1513398909 @default.
- W1926301514 cites W1953606363 @default.
- W1926301514 cites W1980703745 @default.
- W1926301514 cites W2014902591 @default.
- W1926301514 cites W2022204871 @default.
- W1926301514 cites W2079521622 @default.
- W1926301514 cites W2102998034 @default.
- W1926301514 cites W2114535528 @default.
- W1926301514 cites W2115023510 @default.
- W1926301514 cites W2138290126 @default.
- W1926301514 cites W2146241755 @default.
- W1926301514 cites W2157052295 @default.
- W1926301514 cites W2166706824 @default.
- W1926301514 cites W2166950155 @default.
- W1926301514 cites W2168493061 @default.
- W1926301514 cites W4205184193 @default.
- W1926301514 cites W54887220 @default.
- W1926301514 cites W802214770 @default.
- W1926301514 doi "https://doi.org/10.1109/escience.2015.18" @default.
- W1926301514 hasPublicationYear "2015" @default.
- W1926301514 type Work @default.
- W1926301514 sameAs 1926301514 @default.
- W1926301514 citedByCount "3" @default.
- W1926301514 countsByYear W19263015142016 @default.
- W1926301514 countsByYear W19263015142017 @default.
- W1926301514 countsByYear W19263015142018 @default.
- W1926301514 crossrefType "proceedings-article" @default.
- W1926301514 hasAuthorship W1926301514A5004663257 @default.
- W1926301514 hasAuthorship W1926301514A5029982012 @default.
- W1926301514 hasAuthorship W1926301514A5089332429 @default.
- W1926301514 hasAuthorship W1926301514A5090167566 @default.
- W1926301514 hasConcept C100609095 @default.
- W1926301514 hasConcept C120665830 @default.
- W1926301514 hasConcept C121332964 @default.
- W1926301514 hasConcept C12713177 @default.
- W1926301514 hasConcept C154945302 @default.
- W1926301514 hasConcept C192209626 @default.
- W1926301514 hasConcept C204321447 @default.
- W1926301514 hasConcept C206310091 @default.
- W1926301514 hasConcept C23123220 @default.
- W1926301514 hasConcept C2524010 @default.
- W1926301514 hasConcept C28719098 @default.
- W1926301514 hasConcept C33923547 @default.
- W1926301514 hasConcept C41008148 @default.
- W1926301514 hasConcept C66402592 @default.
- W1926301514 hasConceptScore W1926301514C100609095 @default.
- W1926301514 hasConceptScore W1926301514C120665830 @default.
- W1926301514 hasConceptScore W1926301514C121332964 @default.
- W1926301514 hasConceptScore W1926301514C12713177 @default.
- W1926301514 hasConceptScore W1926301514C154945302 @default.
- W1926301514 hasConceptScore W1926301514C192209626 @default.
- W1926301514 hasConceptScore W1926301514C204321447 @default.
- W1926301514 hasConceptScore W1926301514C206310091 @default.
- W1926301514 hasConceptScore W1926301514C23123220 @default.
- W1926301514 hasConceptScore W1926301514C2524010 @default.
- W1926301514 hasConceptScore W1926301514C28719098 @default.
- W1926301514 hasConceptScore W1926301514C33923547 @default.
- W1926301514 hasConceptScore W1926301514C41008148 @default.
- W1926301514 hasConceptScore W1926301514C66402592 @default.
- W1926301514 hasLocation W19263015141 @default.
- W1926301514 hasOpenAccess W1926301514 @default.
- W1926301514 hasPrimaryLocation W19263015141 @default.
- W1926301514 hasRelatedWork W2091233881 @default.
- W1926301514 hasRelatedWork W2124102101 @default.
- W1926301514 hasRelatedWork W2333383158 @default.
- W1926301514 hasRelatedWork W2352366064 @default.
- W1926301514 hasRelatedWork W2380179524 @default.
- W1926301514 hasRelatedWork W2754826905 @default.
- W1926301514 hasRelatedWork W3166536154 @default.
- W1926301514 hasRelatedWork W4250305970 @default.
- W1926301514 hasRelatedWork W4283365723 @default.
- W1926301514 hasRelatedWork W1570928019 @default.
- W1926301514 isParatext "false" @default.
- W1926301514 isRetracted "false" @default.
- W1926301514 magId "1926301514" @default.
- W1926301514 workType "article" @default.