Matches in SemOpenAlex for { <https://semopenalex.org/work/W1930475089> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1930475089 endingPage "550" @default.
- W1930475089 startingPage "543" @default.
- W1930475089 abstract "Successful operation of a district heating system requires optimal scheduling of heating resources to satisfy heating demands. The optimal operation, therefore, requires accurate short-term forecasts of future heat load. In this paper, short-term forecasting of heat load in a district heating system of Ljubljana is presented. Heat load data and weather-related influential variables for five subsequent winter seasons of district heating operation are applied in this study. Various linear models and nonlinear neural network-based forecasting models are developed to forecast the future daily heat load with the forecasting horizon one day ahead. The models are evaluated based on generalization error, obtained on an independent test data set. Results demonstrate the importance of outdoor temperature as the most important influential variable. Other influential inputs include solar radiation and extracted features denoting population activities (such as day of the week). Comparison of forecasting models reveals good forecasting performance of a linear stepwise regression model (SR) that utilizes only a subset of the most relevant input variables. The operation of the SR model was improved by using neural network (NN) models, and also NN models with a direct linear link (NNLL). The latter showed the overall best forecasting performance, which suggests that NN or the proposed NNLL structures should be considered as forecasting solutions for applied forecasting in district heating markets." @default.
- W1930475089 created "2016-06-24" @default.
- W1930475089 creator A5058308909 @default.
- W1930475089 creator A5071171883 @default.
- W1930475089 creator A5088250900 @default.
- W1930475089 date "2015-09-15" @default.
- W1930475089 modified "2023-10-17" @default.
- W1930475089 title "Linear and Neural Network-based Models for Short-Term Heat Load Forecasting" @default.
- W1930475089 cites W1963687576 @default.
- W1930475089 cites W1973951213 @default.
- W1930475089 cites W1977432880 @default.
- W1930475089 cites W1984473553 @default.
- W1930475089 cites W1985336195 @default.
- W1930475089 cites W2000093387 @default.
- W1930475089 cites W2016210396 @default.
- W1930475089 cites W2022480405 @default.
- W1930475089 cites W2023419040 @default.
- W1930475089 cites W2032060954 @default.
- W1930475089 cites W2046669664 @default.
- W1930475089 cites W2056621764 @default.
- W1930475089 cites W2086384343 @default.
- W1930475089 cites W2094054185 @default.
- W1930475089 cites W2127772141 @default.
- W1930475089 cites W2140461260 @default.
- W1930475089 doi "https://doi.org/10.5545/sv-jme.2015.2548" @default.
- W1930475089 hasPublicationYear "2015" @default.
- W1930475089 type Work @default.
- W1930475089 sameAs 1930475089 @default.
- W1930475089 citedByCount "29" @default.
- W1930475089 countsByYear W19304750892016 @default.
- W1930475089 countsByYear W19304750892017 @default.
- W1930475089 countsByYear W19304750892019 @default.
- W1930475089 countsByYear W19304750892020 @default.
- W1930475089 countsByYear W19304750892021 @default.
- W1930475089 countsByYear W19304750892022 @default.
- W1930475089 crossrefType "journal-article" @default.
- W1930475089 hasAuthorship W1930475089A5058308909 @default.
- W1930475089 hasAuthorship W1930475089A5071171883 @default.
- W1930475089 hasAuthorship W1930475089A5088250900 @default.
- W1930475089 hasBestOaLocation W19304750891 @default.
- W1930475089 hasConcept C121332964 @default.
- W1930475089 hasConcept C149782125 @default.
- W1930475089 hasConcept C154945302 @default.
- W1930475089 hasConcept C2989353520 @default.
- W1930475089 hasConcept C33923547 @default.
- W1930475089 hasConcept C41008148 @default.
- W1930475089 hasConcept C50644808 @default.
- W1930475089 hasConcept C61797465 @default.
- W1930475089 hasConcept C62520636 @default.
- W1930475089 hasConcept C97355855 @default.
- W1930475089 hasConceptScore W1930475089C121332964 @default.
- W1930475089 hasConceptScore W1930475089C149782125 @default.
- W1930475089 hasConceptScore W1930475089C154945302 @default.
- W1930475089 hasConceptScore W1930475089C2989353520 @default.
- W1930475089 hasConceptScore W1930475089C33923547 @default.
- W1930475089 hasConceptScore W1930475089C41008148 @default.
- W1930475089 hasConceptScore W1930475089C50644808 @default.
- W1930475089 hasConceptScore W1930475089C61797465 @default.
- W1930475089 hasConceptScore W1930475089C62520636 @default.
- W1930475089 hasConceptScore W1930475089C97355855 @default.
- W1930475089 hasIssue "9" @default.
- W1930475089 hasLocation W19304750891 @default.
- W1930475089 hasLocation W19304750892 @default.
- W1930475089 hasLocation W19304750893 @default.
- W1930475089 hasOpenAccess W1930475089 @default.
- W1930475089 hasPrimaryLocation W19304750891 @default.
- W1930475089 hasRelatedWork W2115549111 @default.
- W1930475089 hasRelatedWork W2246950911 @default.
- W1930475089 hasRelatedWork W2357137696 @default.
- W1930475089 hasRelatedWork W2367775581 @default.
- W1930475089 hasRelatedWork W2371877363 @default.
- W1930475089 hasRelatedWork W2381360513 @default.
- W1930475089 hasRelatedWork W2384127255 @default.
- W1930475089 hasRelatedWork W2386387936 @default.
- W1930475089 hasRelatedWork W2390594737 @default.
- W1930475089 hasRelatedWork W4243590073 @default.
- W1930475089 hasVolume "61" @default.
- W1930475089 isParatext "false" @default.
- W1930475089 isRetracted "false" @default.
- W1930475089 magId "1930475089" @default.
- W1930475089 workType "article" @default.