Matches in SemOpenAlex for { <https://semopenalex.org/work/W1930584469> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W1930584469 endingPage "1741" @default.
- W1930584469 startingPage "1735" @default.
- W1930584469 abstract "In this paper, we prove the following automatic adjoint theorem: For any sequence spaces <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F left-parenthesis upper Y right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the signed-weak gliding hump property and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an infinite matrix which transforms <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>E(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F left-parenthesis upper Y right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F(Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the transpose matrix <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A prime> <mml:semantics> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>A’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> transforms <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F left-parenthesis upper Y right-parenthesis Superscript beta> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>β<!-- β --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>F(Y)^beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E left-parenthesis upper X right-parenthesis Superscript beta> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>β<!-- β --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>E(X)^beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x element-of upper E left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>xin E(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T element-of upper F left-parenthesis upper Y right-parenthesis Superscript beta> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mi>β<!-- β --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>Tin F(Y)^beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket upper A x comma upper T right-bracket equals left-bracket x comma upper A prime upper T right-bracket> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mi>A</mml:mi> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mi>T</mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>[Ax,T]=[x,A’T]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. That is, the adjoint operator of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> automatically exists and is just the transpose matrix <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A prime> <mml:semantics> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>A’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. From the theorem we obtain a class of infinite matrix topological algebras <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis lamda comma mu right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(lambda ,mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove also a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=lamda> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding=application/x-tex>lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-multiplier convergence theorem of Orlicz-Pettis type. The theorem improves substantially the famous Stiles’ Orlicz-Pettis theorem." @default.
- W1930584469 created "2016-06-24" @default.
- W1930584469 creator A5042162337 @default.
- W1930584469 creator A5070641856 @default.
- W1930584469 date "2001-12-20" @default.
- W1930584469 modified "2023-09-26" @default.
- W1930584469 title "An automatic adjoint theorem and its applications" @default.
- W1930584469 cites W16176933 @default.
- W1930584469 cites W2110504298 @default.
- W1930584469 cites W4237280847 @default.
- W1930584469 cites W4251026659 @default.
- W1930584469 doi "https://doi.org/10.1090/s0002-9939-01-06285-2" @default.
- W1930584469 hasPublicationYear "2001" @default.
- W1930584469 type Work @default.
- W1930584469 sameAs 1930584469 @default.
- W1930584469 citedByCount "4" @default.
- W1930584469 crossrefType "journal-article" @default.
- W1930584469 hasAuthorship W1930584469A5042162337 @default.
- W1930584469 hasAuthorship W1930584469A5070641856 @default.
- W1930584469 hasBestOaLocation W19305844691 @default.
- W1930584469 hasConcept C11413529 @default.
- W1930584469 hasConcept C138885662 @default.
- W1930584469 hasConcept C154945302 @default.
- W1930584469 hasConcept C2776321320 @default.
- W1930584469 hasConcept C2776542307 @default.
- W1930584469 hasConcept C41008148 @default.
- W1930584469 hasConcept C41895202 @default.
- W1930584469 hasConceptScore W1930584469C11413529 @default.
- W1930584469 hasConceptScore W1930584469C138885662 @default.
- W1930584469 hasConceptScore W1930584469C154945302 @default.
- W1930584469 hasConceptScore W1930584469C2776321320 @default.
- W1930584469 hasConceptScore W1930584469C2776542307 @default.
- W1930584469 hasConceptScore W1930584469C41008148 @default.
- W1930584469 hasConceptScore W1930584469C41895202 @default.
- W1930584469 hasIssue "6" @default.
- W1930584469 hasLocation W19305844691 @default.
- W1930584469 hasOpenAccess W1930584469 @default.
- W1930584469 hasPrimaryLocation W19305844691 @default.
- W1930584469 hasRelatedWork W151193258 @default.
- W1930584469 hasRelatedWork W1529400504 @default.
- W1930584469 hasRelatedWork W1871911958 @default.
- W1930584469 hasRelatedWork W1892467659 @default.
- W1930584469 hasRelatedWork W2348710178 @default.
- W1930584469 hasRelatedWork W2808586768 @default.
- W1930584469 hasRelatedWork W2998403542 @default.
- W1930584469 hasRelatedWork W3201926073 @default.
- W1930584469 hasRelatedWork W38394648 @default.
- W1930584469 hasRelatedWork W73525116 @default.
- W1930584469 hasVolume "130" @default.
- W1930584469 isParatext "false" @default.
- W1930584469 isRetracted "false" @default.
- W1930584469 magId "1930584469" @default.
- W1930584469 workType "article" @default.