Matches in SemOpenAlex for { <https://semopenalex.org/work/W193144377> ?p ?o ?g. }
- W193144377 abstract "In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born.A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped.Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together.In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems." @default.
- W193144377 created "2016-06-24" @default.
- W193144377 creator A5050061923 @default.
- W193144377 date "2010-01-01" @default.
- W193144377 modified "2023-09-26" @default.
- W193144377 title "Discovery & effective use of quality association rules in multi-level datasets" @default.
- W193144377 cites W109273429 @default.
- W193144377 cites W13604672 @default.
- W193144377 cites W1503729935 @default.
- W193144377 cites W1514516794 @default.
- W193144377 cites W1519389640 @default.
- W193144377 cites W1530276735 @default.
- W193144377 cites W1552502114 @default.
- W193144377 cites W1574241439 @default.
- W193144377 cites W1729969041 @default.
- W193144377 cites W188378287 @default.
- W193144377 cites W1968397045 @default.
- W193144377 cites W1971040550 @default.
- W193144377 cites W1978387271 @default.
- W193144377 cites W1984606279 @default.
- W193144377 cites W1997309399 @default.
- W193144377 cites W1998631319 @default.
- W193144377 cites W1998801147 @default.
- W193144377 cites W2043403353 @default.
- W193144377 cites W2045487373 @default.
- W193144377 cites W2046893834 @default.
- W193144377 cites W2074574866 @default.
- W193144377 cites W2078079733 @default.
- W193144377 cites W2085638007 @default.
- W193144377 cites W2094018592 @default.
- W193144377 cites W2097129520 @default.
- W193144377 cites W2099019567 @default.
- W193144377 cites W2102297485 @default.
- W193144377 cites W2123701797 @default.
- W193144377 cites W2126400629 @default.
- W193144377 cites W2133567627 @default.
- W193144377 cites W2134197825 @default.
- W193144377 cites W2138108551 @default.
- W193144377 cites W2144411266 @default.
- W193144377 cites W2144481322 @default.
- W193144377 cites W2147654806 @default.
- W193144377 cites W2160326364 @default.
- W193144377 cites W2171479472 @default.
- W193144377 cites W2171960770 @default.
- W193144377 cites W2293888039 @default.
- W193144377 cites W2614801222 @default.
- W193144377 cites W28669376 @default.
- W193144377 cites W2887048860 @default.
- W193144377 hasPublicationYear "2010" @default.
- W193144377 type Work @default.
- W193144377 sameAs 193144377 @default.
- W193144377 citedByCount "3" @default.
- W193144377 countsByYear W1931443772013 @default.
- W193144377 countsByYear W1931443772014 @default.
- W193144377 crossrefType "dissertation" @default.
- W193144377 hasAuthorship W193144377A5050061923 @default.
- W193144377 hasConcept C111472728 @default.
- W193144377 hasConcept C111919701 @default.
- W193144377 hasConcept C120567893 @default.
- W193144377 hasConcept C124101348 @default.
- W193144377 hasConcept C138885662 @default.
- W193144377 hasConcept C142853389 @default.
- W193144377 hasConcept C193524817 @default.
- W193144377 hasConcept C23123220 @default.
- W193144377 hasConcept C2522767166 @default.
- W193144377 hasConcept C2779530757 @default.
- W193144377 hasConcept C41008148 @default.
- W193144377 hasConcept C98045186 @default.
- W193144377 hasConceptScore W193144377C111472728 @default.
- W193144377 hasConceptScore W193144377C111919701 @default.
- W193144377 hasConceptScore W193144377C120567893 @default.
- W193144377 hasConceptScore W193144377C124101348 @default.
- W193144377 hasConceptScore W193144377C138885662 @default.
- W193144377 hasConceptScore W193144377C142853389 @default.
- W193144377 hasConceptScore W193144377C193524817 @default.
- W193144377 hasConceptScore W193144377C23123220 @default.
- W193144377 hasConceptScore W193144377C2522767166 @default.
- W193144377 hasConceptScore W193144377C2779530757 @default.
- W193144377 hasConceptScore W193144377C41008148 @default.
- W193144377 hasConceptScore W193144377C98045186 @default.
- W193144377 hasLocation W1931443771 @default.
- W193144377 hasOpenAccess W193144377 @default.
- W193144377 hasPrimaryLocation W1931443771 @default.
- W193144377 hasRelatedWork W14587325 @default.
- W193144377 hasRelatedWork W1544908118 @default.
- W193144377 hasRelatedWork W1606937812 @default.
- W193144377 hasRelatedWork W2003370347 @default.
- W193144377 hasRelatedWork W2060687491 @default.
- W193144377 hasRelatedWork W2081395474 @default.
- W193144377 hasRelatedWork W2111125654 @default.
- W193144377 hasRelatedWork W2133316964 @default.
- W193144377 hasRelatedWork W2295937230 @default.
- W193144377 hasRelatedWork W2411750157 @default.
- W193144377 hasRelatedWork W2516647831 @default.
- W193144377 hasRelatedWork W2597564776 @default.
- W193144377 hasRelatedWork W2628510592 @default.
- W193144377 hasRelatedWork W2767409803 @default.
- W193144377 hasRelatedWork W2900283543 @default.
- W193144377 hasRelatedWork W2913509732 @default.
- W193144377 hasRelatedWork W2988564517 @default.