Matches in SemOpenAlex for { <https://semopenalex.org/work/W1931492244> ?p ?o ?g. }
- W1931492244 endingPage "172" @default.
- W1931492244 startingPage "159" @default.
- W1931492244 abstract "Backchannel feedback is an important kind of nonverbal feedback within face-to-face interaction that signals a person’s interest, attention and willingness to keep listening. Learning to predict when to give such feedback is one of the keys to creating natural and realistic virtual humans. Prediction models are traditionally learned from large corpora of annotated face-to-face interactions, but this approach has several limitations. Previously, we proposed a novel data collection method, Parasocial Consensus Sampling, which addresses these limitations. In this paper, we show that data collected in this manner can produce effective learned models. A subjective evaluation shows that the virtual human driven by the resulting probabilistic model significantly outperforms a previously published rule-based agent in terms of rapport, perceived accuracy and naturalness, and it is even better than the virtual human driven by real listeners’ behavior in some cases." @default.
- W1931492244 created "2016-06-24" @default.
- W1931492244 creator A5002716581 @default.
- W1931492244 creator A5051992568 @default.
- W1931492244 creator A5081398601 @default.
- W1931492244 date "2010-01-01" @default.
- W1931492244 modified "2023-10-18" @default.
- W1931492244 title "Learning Backchannel Prediction Model from Parasocial Consensus Sampling: A Subjective Evaluation" @default.
- W1931492244 cites W1563542286 @default.
- W1931492244 cites W1580444790 @default.
- W1931492244 cites W1656810637 @default.
- W1931492244 cites W1889777305 @default.
- W1931492244 cites W1973561830 @default.
- W1931492244 cites W1981526276 @default.
- W1931492244 cites W2016126398 @default.
- W1931492244 cites W2017005212 @default.
- W1931492244 cites W2044141024 @default.
- W1931492244 cites W2067560177 @default.
- W1931492244 cites W2086568921 @default.
- W1931492244 cites W2105422377 @default.
- W1931492244 cites W2112618815 @default.
- W1931492244 cites W2118363134 @default.
- W1931492244 cites W2118748593 @default.
- W1931492244 cites W2120178944 @default.
- W1931492244 cites W2123795719 @default.
- W1931492244 cites W2132224104 @default.
- W1931492244 cites W2136902017 @default.
- W1931492244 cites W2142824220 @default.
- W1931492244 cites W2150609911 @default.
- W1931492244 cites W2154152675 @default.
- W1931492244 cites W2158429577 @default.
- W1931492244 cites W216945601 @default.
- W1931492244 cites W2911776943 @default.
- W1931492244 cites W4255293871 @default.
- W1931492244 doi "https://doi.org/10.1007/978-3-642-15892-6_17" @default.
- W1931492244 hasPublicationYear "2010" @default.
- W1931492244 type Work @default.
- W1931492244 sameAs 1931492244 @default.
- W1931492244 citedByCount "16" @default.
- W1931492244 countsByYear W19314922442012 @default.
- W1931492244 countsByYear W19314922442013 @default.
- W1931492244 countsByYear W19314922442014 @default.
- W1931492244 countsByYear W19314922442017 @default.
- W1931492244 countsByYear W19314922442018 @default.
- W1931492244 countsByYear W19314922442019 @default.
- W1931492244 countsByYear W19314922442020 @default.
- W1931492244 countsByYear W19314922442021 @default.
- W1931492244 crossrefType "book-chapter" @default.
- W1931492244 hasAuthorship W1931492244A5002716581 @default.
- W1931492244 hasAuthorship W1931492244A5051992568 @default.
- W1931492244 hasAuthorship W1931492244A5081398601 @default.
- W1931492244 hasConcept C106131492 @default.
- W1931492244 hasConcept C119857082 @default.
- W1931492244 hasConcept C121332964 @default.
- W1931492244 hasConcept C134537474 @default.
- W1931492244 hasConcept C140779682 @default.
- W1931492244 hasConcept C144024400 @default.
- W1931492244 hasConcept C145633318 @default.
- W1931492244 hasConcept C154945302 @default.
- W1931492244 hasConcept C15744967 @default.
- W1931492244 hasConcept C177291462 @default.
- W1931492244 hasConcept C2779304628 @default.
- W1931492244 hasConcept C28490314 @default.
- W1931492244 hasConcept C31972630 @default.
- W1931492244 hasConcept C36289849 @default.
- W1931492244 hasConcept C41008148 @default.
- W1931492244 hasConcept C46312422 @default.
- W1931492244 hasConcept C49937458 @default.
- W1931492244 hasConcept C62520636 @default.
- W1931492244 hasConceptScore W1931492244C106131492 @default.
- W1931492244 hasConceptScore W1931492244C119857082 @default.
- W1931492244 hasConceptScore W1931492244C121332964 @default.
- W1931492244 hasConceptScore W1931492244C134537474 @default.
- W1931492244 hasConceptScore W1931492244C140779682 @default.
- W1931492244 hasConceptScore W1931492244C144024400 @default.
- W1931492244 hasConceptScore W1931492244C145633318 @default.
- W1931492244 hasConceptScore W1931492244C154945302 @default.
- W1931492244 hasConceptScore W1931492244C15744967 @default.
- W1931492244 hasConceptScore W1931492244C177291462 @default.
- W1931492244 hasConceptScore W1931492244C2779304628 @default.
- W1931492244 hasConceptScore W1931492244C28490314 @default.
- W1931492244 hasConceptScore W1931492244C31972630 @default.
- W1931492244 hasConceptScore W1931492244C36289849 @default.
- W1931492244 hasConceptScore W1931492244C41008148 @default.
- W1931492244 hasConceptScore W1931492244C46312422 @default.
- W1931492244 hasConceptScore W1931492244C49937458 @default.
- W1931492244 hasConceptScore W1931492244C62520636 @default.
- W1931492244 hasLocation W19314922441 @default.
- W1931492244 hasOpenAccess W1931492244 @default.
- W1931492244 hasPrimaryLocation W19314922441 @default.
- W1931492244 hasRelatedWork W1506666725 @default.
- W1931492244 hasRelatedWork W1575659177 @default.
- W1931492244 hasRelatedWork W2014182622 @default.
- W1931492244 hasRelatedWork W2550175828 @default.
- W1931492244 hasRelatedWork W2961085424 @default.
- W1931492244 hasRelatedWork W4286629047 @default.
- W1931492244 hasRelatedWork W4290792893 @default.
- W1931492244 hasRelatedWork W4306321456 @default.