Matches in SemOpenAlex for { <https://semopenalex.org/work/W1932003244> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1932003244 endingPage "37" @default.
- W1932003244 startingPage "29" @default.
- W1932003244 abstract "Images are rich information carriers and (such as medical images) are normally contaminated by additive and substitutive noise which makes the extraction of features (and clinical data analysis) difficult. Hence to enhance the image quality prior to post processing, image pre-processing operations such as de-noising with linear and non-linear filters have been applied traditionally. Recently nonlinear filtering techniques have been assumed a lot of significance as they are capable of suppressing the effects of substitutive (salt and pepper impulsive noise of low to high noise levels) and additive (Gaussian noise of low to medium noise levels) noise types and to preserve the important signal/image details such as edges and fine details and suppress the degradations occurring at the time of image/signal formation or transmission through nonlinear channels, during storage and retrieval. Broadly speaking, image filters exist in transform and spatial domains. Spatial domain nonlinear filters are more versatile than their counterparts, namely linear filters. Spatial domain nonlinear fuzzy classical filters are simply modification/extension of the classical median and moving average filtering approaches, offer several advantages over classical nonlinear filters, and using simple fuzzy rules it is easy to realize them. They are also capable of reasoning with vague and uncertain information. Work presented in this paper deals with nonlinear median based and linear average based fuzzy filters and aims at fulfilling three objectives, viz; (i) To systematically study the performance of classical nonlinear median and fuzzy median and average filters for the removal of impulse and Gaussian noise from gray and color images that have been corrupted from low to high values of noise and to present an experimental review to identify the best algorithm within the frame work of classical fuzzy median filters. (ii)To propose : (a) an impulse classifier based fuzzy switching median filter and (b) the design of a multi pass cascaded fuzzy filter for noise cancellation, and explore their applications to reduce noise in images with random and impulse characteristics. Finally to conclude the work a comparative study is done and the computational aspects are analyzed with the help of mean square error (MSE), peak signal to noise ratio (PSNR), and 2D correlation (COR) and some future solutions are proposed." @default.
- W1932003244 created "2016-06-24" @default.
- W1932003244 creator A5006054233 @default.
- W1932003244 creator A5008409151 @default.
- W1932003244 creator A5067113472 @default.
- W1932003244 date "2015-09-17" @default.
- W1932003244 modified "2023-09-25" @default.
- W1932003244 title "Novel Fuzzy Filters for Noise Suppression from Digital Grey and Color Images" @default.
- W1932003244 cites W1520499060 @default.
- W1932003244 cites W1605432954 @default.
- W1932003244 cites W1909997678 @default.
- W1932003244 cites W1989175590 @default.
- W1932003244 cites W2094478269 @default.
- W1932003244 cites W2115098037 @default.
- W1932003244 cites W2319794630 @default.
- W1932003244 cites W2417385130 @default.
- W1932003244 doi "https://doi.org/10.5120/ijca2015906236" @default.
- W1932003244 hasPublicationYear "2015" @default.
- W1932003244 type Work @default.
- W1932003244 sameAs 1932003244 @default.
- W1932003244 citedByCount "2" @default.
- W1932003244 countsByYear W19320032442017 @default.
- W1932003244 countsByYear W19320032442021 @default.
- W1932003244 crossrefType "journal-article" @default.
- W1932003244 hasAuthorship W1932003244A5006054233 @default.
- W1932003244 hasAuthorship W1932003244A5008409151 @default.
- W1932003244 hasAuthorship W1932003244A5067113472 @default.
- W1932003244 hasBestOaLocation W19320032441 @default.
- W1932003244 hasConcept C106131492 @default.
- W1932003244 hasConcept C115961682 @default.
- W1932003244 hasConcept C154945302 @default.
- W1932003244 hasConcept C31972630 @default.
- W1932003244 hasConcept C36390408 @default.
- W1932003244 hasConcept C41008148 @default.
- W1932003244 hasConcept C58166 @default.
- W1932003244 hasConcept C99498987 @default.
- W1932003244 hasConceptScore W1932003244C106131492 @default.
- W1932003244 hasConceptScore W1932003244C115961682 @default.
- W1932003244 hasConceptScore W1932003244C154945302 @default.
- W1932003244 hasConceptScore W1932003244C31972630 @default.
- W1932003244 hasConceptScore W1932003244C36390408 @default.
- W1932003244 hasConceptScore W1932003244C41008148 @default.
- W1932003244 hasConceptScore W1932003244C58166 @default.
- W1932003244 hasConceptScore W1932003244C99498987 @default.
- W1932003244 hasIssue "15" @default.
- W1932003244 hasLocation W19320032441 @default.
- W1932003244 hasOpenAccess W1932003244 @default.
- W1932003244 hasPrimaryLocation W19320032441 @default.
- W1932003244 hasRelatedWork W1891287906 @default.
- W1932003244 hasRelatedWork W1969923398 @default.
- W1932003244 hasRelatedWork W2036807459 @default.
- W1932003244 hasRelatedWork W2058170566 @default.
- W1932003244 hasRelatedWork W2166024367 @default.
- W1932003244 hasRelatedWork W2229312674 @default.
- W1932003244 hasRelatedWork W258625772 @default.
- W1932003244 hasRelatedWork W2755342338 @default.
- W1932003244 hasRelatedWork W2772917594 @default.
- W1932003244 hasRelatedWork W3116076068 @default.
- W1932003244 hasVolume "125" @default.
- W1932003244 isParatext "false" @default.
- W1932003244 isRetracted "false" @default.
- W1932003244 magId "1932003244" @default.
- W1932003244 workType "article" @default.