Matches in SemOpenAlex for { <https://semopenalex.org/work/W193291750> ?p ?o ?g. }
- W193291750 abstract "The main goal of this research is to examine and to improve the anomaly detection function of artificial immune systems, specifically the negative selection algorithm and other self/non-self recognition techniques. This research investigates different representation schemes for the negative selection and proposes new detector generation algorithms suitable for such representations. Accordingly, different representations are explored: hyper-rectangles (which can be interpreted as rules), fuzzy rules, and hyper-spheres. Four different detector generation algorithms are proposed: Negative Selection with Detection Rules (NSDR, an evolutionary algorithm to generate hypercube detectors), Negative Selection with Fuzzy Detection Rules (NSFDR, an evolutionary algorithm to generate fuzzy-rule detectors), Real-valued Negative Selection (RNS, a heuristic algorithm to generate hyper-spherical detectors), and Randomized Real-valued Negative Selection (RRNS, an algorithm for generating hyper-spherical detectors based on Monte Carlo methods). Also, a hybrid immune learning algorithm, which combines RNS (or RRNS) and classification algorithms is developed. This algorithm allows the application of a supervised learning technique even when samples from only one class (normal) are available. Different experiments are performed with synthetic and real world data from different sources. The experimental results show that the proposed representations along with the proposed algorithms provide some advantages over the binary negative selection algorithm. The most relevant advantages include improved scalability, more expressiveness that allows the extraction of high-level domain knowledge, non-crisp distinction between normal and abnormal, and better performance in anomaly detection." @default.
- W193291750 created "2016-06-24" @default.
- W193291750 creator A5048167872 @default.
- W193291750 creator A5080973347 @default.
- W193291750 date "2003-01-01" @default.
- W193291750 modified "2023-09-26" @default.
- W193291750 title "A study of artificial immune systems applied to anomaly detection" @default.
- W193291750 cites W115122677 @default.
- W193291750 cites W1295707 @default.
- W193291750 cites W1440213399 @default.
- W193291750 cites W147687952 @default.
- W193291750 cites W1480798532 @default.
- W193291750 cites W1481731616 @default.
- W193291750 cites W1481805904 @default.
- W193291750 cites W1484413656 @default.
- W193291750 cites W1487207002 @default.
- W193291750 cites W1489119587 @default.
- W193291750 cites W1496574436 @default.
- W193291750 cites W1517781785 @default.
- W193291750 cites W1524761913 @default.
- W193291750 cites W1533021960 @default.
- W193291750 cites W1539179487 @default.
- W193291750 cites W1543388142 @default.
- W193291750 cites W1551186452 @default.
- W193291750 cites W1551657146 @default.
- W193291750 cites W1552866552 @default.
- W193291750 cites W1558491769 @default.
- W193291750 cites W1566766802 @default.
- W193291750 cites W1583975142 @default.
- W193291750 cites W1584973398 @default.
- W193291750 cites W1595865603 @default.
- W193291750 cites W1600397119 @default.
- W193291750 cites W1601024910 @default.
- W193291750 cites W1604262696 @default.
- W193291750 cites W1606919204 @default.
- W193291750 cites W1608809306 @default.
- W193291750 cites W1670263352 @default.
- W193291750 cites W171669346 @default.
- W193291750 cites W172830190 @default.
- W193291750 cites W185956299 @default.
- W193291750 cites W1877810236 @default.
- W193291750 cites W189008923 @default.
- W193291750 cites W1947420815 @default.
- W193291750 cites W1969557815 @default.
- W193291750 cites W1978175161 @default.
- W193291750 cites W1987263883 @default.
- W193291750 cites W1987751268 @default.
- W193291750 cites W1988413436 @default.
- W193291750 cites W1995003166 @default.
- W193291750 cites W2001619934 @default.
- W193291750 cites W2003652884 @default.
- W193291750 cites W2007362831 @default.
- W193291750 cites W2013489124 @default.
- W193291750 cites W2024060531 @default.
- W193291750 cites W2024668293 @default.
- W193291750 cites W2032251250 @default.
- W193291750 cites W2043419861 @default.
- W193291750 cites W2049058890 @default.
- W193291750 cites W2056760934 @default.
- W193291750 cites W2058657545 @default.
- W193291750 cites W2065329645 @default.
- W193291750 cites W206794860 @default.
- W193291750 cites W2069739265 @default.
- W193291750 cites W2072456771 @default.
- W193291750 cites W2076526693 @default.
- W193291750 cites W2082600559 @default.
- W193291750 cites W2084812512 @default.
- W193291750 cites W2089933214 @default.
- W193291750 cites W2094631910 @default.
- W193291750 cites W2106642566 @default.
- W193291750 cites W2107172243 @default.
- W193291750 cites W2109779209 @default.
- W193291750 cites W2109845050 @default.
- W193291750 cites W2110623653 @default.
- W193291750 cites W2113970724 @default.
- W193291750 cites W2118269922 @default.
- W193291750 cites W2118785502 @default.
- W193291750 cites W2119120756 @default.
- W193291750 cites W2122111042 @default.
- W193291750 cites W2124776405 @default.
- W193291750 cites W2128193809 @default.
- W193291750 cites W2129624205 @default.
- W193291750 cites W2130416410 @default.
- W193291750 cites W2131579134 @default.
- W193291750 cites W2133228544 @default.
- W193291750 cites W2135560526 @default.
- W193291750 cites W2140322634 @default.
- W193291750 cites W2146082061 @default.
- W193291750 cites W2146548789 @default.
- W193291750 cites W2149703646 @default.
- W193291750 cites W2150847526 @default.
- W193291750 cites W2151135734 @default.
- W193291750 cites W2152448081 @default.
- W193291750 cites W2152806580 @default.
- W193291750 cites W2157122594 @default.
- W193291750 cites W2157665255 @default.
- W193291750 cites W2160899489 @default.
- W193291750 cites W2161449253 @default.
- W193291750 cites W2164688516 @default.
- W193291750 cites W2165558283 @default.