Matches in SemOpenAlex for { <https://semopenalex.org/work/W1933831472> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1933831472 endingPage "440" @default.
- W1933831472 startingPage "432" @default.
- W1933831472 abstract "Let Pn be the class of simple labeled planar graphs with n vertices, and denote by Pn a graph drawn uniformly at random from this set. Basic properties of Pn were first investigated by Denise, Vasconcellos, and Welsh [7]. Since then, the random planar graph has attracted considerable attention, and is nowadays an important and challenging model for evaluating methods that are developed to study properties of random graphs from classes with structural side constraints.In this paper we study closely the structure of Pn. More precisely, let b(l; Pn) be the number of blocks (i.e. maximal biconnected subgraphs) of Pn that contain exactly l vertices, and let lb(Pn) be the number of vertices in the largest block of Pn. We show that with high probability Pn contains a giant block that includes to lower order terms cn vertices, where c a 0.959 is an analytically given constant. Moreover, we show that the second largest block contains only [EQUATION] vertices, and prove sharp concentration results for b(l; Pn), for all 2 ≤ l ≤ n2/3 (here [EQUATION](.) stands for up to logarithmic factors).In fact, we obtain this result as a consequence of a much more general result that we prove in this paper. Let C be a class of labeled connected graphs, and let Cn be a graph drawn uniformly at random from graphs in C that contain exactly n vertices. Under certain assumptions on C, and depending on the behavior of the singularity of the generating function enumerating the elements of C, Cn belongs with high probability to one of the following three categories, which differ vastly in complexity. Cn either(1) behaves like a random planar graph, i.e. lb(Cn) ~ cn, for some analytically given c = c(C), and the second largest block is of order nα, where 1 > α = α(C), or(2) lb(Cn) = O(log n), i.e., all blocks contain at most logarithmically many vertices, or(3) lb(Cn) = O(nα), for some α = α(C)" @default.
- W1933831472 created "2016-06-24" @default.
- W1933831472 creator A5062687538 @default.
- W1933831472 creator A5075970062 @default.
- W1933831472 date "2009-01-04" @default.
- W1933831472 modified "2023-09-26" @default.
- W1933831472 title "Maximal biconnected subgraphs of random planar graphs" @default.
- W1933831472 cites W1482867605 @default.
- W1933831472 cites W151079317 @default.
- W1933831472 cites W1600388690 @default.
- W1933831472 cites W1773540271 @default.
- W1933831472 cites W1970541826 @default.
- W1933831472 cites W1982202832 @default.
- W1933831472 cites W2032139375 @default.
- W1933831472 cites W2079265093 @default.
- W1933831472 cites W2109321618 @default.
- W1933831472 cites W2123221405 @default.
- W1933831472 cites W2134147092 @default.
- W1933831472 doi "https://doi.org/10.5555/1496770.1496818" @default.
- W1933831472 hasPublicationYear "2009" @default.
- W1933831472 type Work @default.
- W1933831472 sameAs 1933831472 @default.
- W1933831472 citedByCount "4" @default.
- W1933831472 crossrefType "proceedings-article" @default.
- W1933831472 hasAuthorship W1933831472A5062687538 @default.
- W1933831472 hasAuthorship W1933831472A5075970062 @default.
- W1933831472 hasConcept C10138342 @default.
- W1933831472 hasConcept C114614502 @default.
- W1933831472 hasConcept C118615104 @default.
- W1933831472 hasConcept C132525143 @default.
- W1933831472 hasConcept C134306372 @default.
- W1933831472 hasConcept C162324750 @default.
- W1933831472 hasConcept C182306322 @default.
- W1933831472 hasConcept C2777210771 @default.
- W1933831472 hasConcept C33923547 @default.
- W1933831472 hasConcept C39927690 @default.
- W1933831472 hasConcept C47458327 @default.
- W1933831472 hasConceptScore W1933831472C10138342 @default.
- W1933831472 hasConceptScore W1933831472C114614502 @default.
- W1933831472 hasConceptScore W1933831472C118615104 @default.
- W1933831472 hasConceptScore W1933831472C132525143 @default.
- W1933831472 hasConceptScore W1933831472C134306372 @default.
- W1933831472 hasConceptScore W1933831472C162324750 @default.
- W1933831472 hasConceptScore W1933831472C182306322 @default.
- W1933831472 hasConceptScore W1933831472C2777210771 @default.
- W1933831472 hasConceptScore W1933831472C33923547 @default.
- W1933831472 hasConceptScore W1933831472C39927690 @default.
- W1933831472 hasConceptScore W1933831472C47458327 @default.
- W1933831472 hasLocation W19338314721 @default.
- W1933831472 hasOpenAccess W1933831472 @default.
- W1933831472 hasPrimaryLocation W19338314721 @default.
- W1933831472 hasRelatedWork W1504925519 @default.
- W1933831472 hasRelatedWork W1527951089 @default.
- W1933831472 hasRelatedWork W172085533 @default.
- W1933831472 hasRelatedWork W1982202832 @default.
- W1933831472 hasRelatedWork W2018165282 @default.
- W1933831472 hasRelatedWork W2048947005 @default.
- W1933831472 hasRelatedWork W2052310372 @default.
- W1933831472 hasRelatedWork W2060159282 @default.
- W1933831472 hasRelatedWork W2160671040 @default.
- W1933831472 hasRelatedWork W2164680149 @default.
- W1933831472 hasRelatedWork W2340541605 @default.
- W1933831472 hasRelatedWork W2586007352 @default.
- W1933831472 hasRelatedWork W2742306436 @default.
- W1933831472 hasRelatedWork W2914250110 @default.
- W1933831472 hasRelatedWork W2942436526 @default.
- W1933831472 hasRelatedWork W2952539738 @default.
- W1933831472 hasRelatedWork W3014061385 @default.
- W1933831472 hasRelatedWork W3100974711 @default.
- W1933831472 hasRelatedWork W3104768492 @default.
- W1933831472 hasRelatedWork W280083573 @default.
- W1933831472 isParatext "false" @default.
- W1933831472 isRetracted "false" @default.
- W1933831472 magId "1933831472" @default.
- W1933831472 workType "article" @default.